

Db2 for z/OS Data Sharing: Performance Considerations

Tori Feltvictoria.felt@ibm.comKeziah Knoppkeziah.knopp@ibm.comMark Radermrader@us.ibm.com

IBM Z Washington Systems Center

May 13, 2024

Central Canada

Db2 Users Group

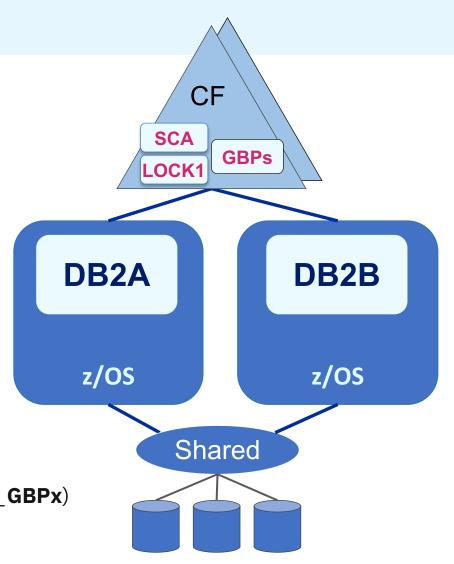
Quick review:

- Components of Parallel Sysplex and Db2 data sharing
- Db2 data sharing processes
- Performance considerations
- Performance indicators
- Examples: displays and reports
- Suggestions

Questions

Components of Parallel Sysplex and Db2 for z/OS data sharing

Coupling facility (CF) LPARs – hi-speed shared memory

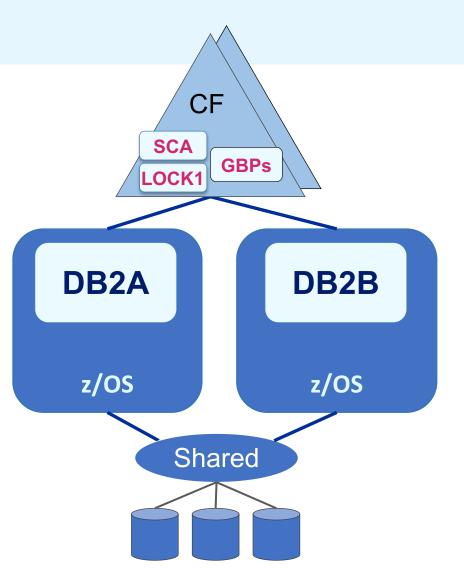

- External (CF) or integrated (ICF aka internal CF)
- CF control code (CFCC)
- Structures: lock, list, cache
- Links: external (short or long) or internal (IC microcode)
- CF resource management (CFRM) policy

z/OS components

- Cross-system extended services (XES)
- Cross-system coupling facility (XCF)

Db2 components

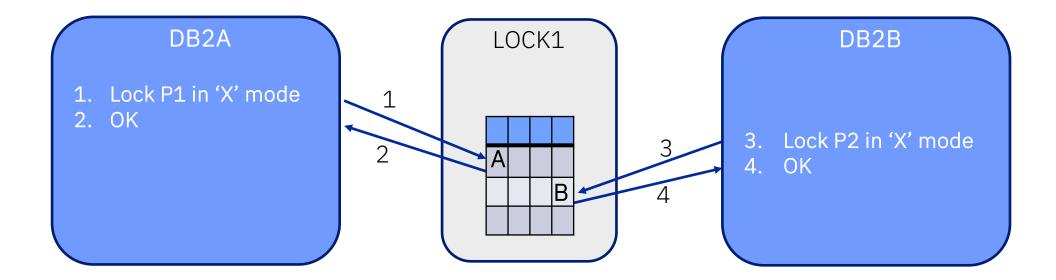
- CF structures: lock (*dsgrpnm_LOCK1*), list (*dsgrpnm_SCA*), cache (*dsgrpnm_GBPx*)
- Shared data 1 Db2 Catalog/Directory, user data
- Read access to all logs


Db2 data sharing processes (1|4)

Global locking – IRLM and LOCK1

- P-locks determine inter-Db2 read/write interest
 - Coherency: resource held in 2 members, one member wants to change
 - Negotiable
- L-locks manage concurrency
 - Serialization: many readers OR one writer
- Group-wide status MSTR and SCA
- Not a significant performance concern if defined well

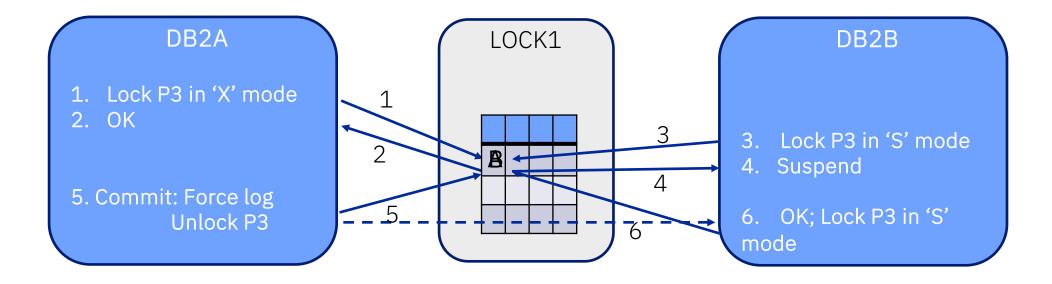
Buffer coherency – DBM1 and GBPs


- GBPs have directory entries to track inter-Db2 interest in buffer pages
- GBPs have data elements to cache changed pages
 - Caching depends on GBP and page set definition
 - GBP definition (GBPCACHE = YES|NO)
 - Page set definition (GBPCACHE = ALL|CHANGED|SYSTEM|NONE)

CCDUG May © 2024 IBM Corporation

Db2 data sharing processes (2|4)

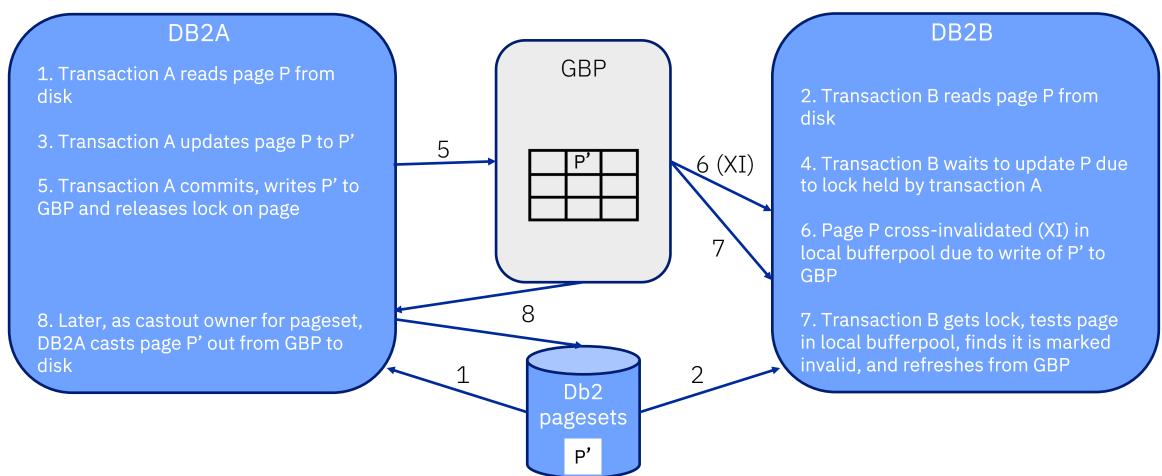
No contention example



CF messages occur in microseconds

b2 data sharing processes (2|4)

Db2 data sharing processes (3|4)


Contention example

CF messages occur in microseconds

CCDUG May © 2024 IBM Corporation

Db2 data sharing processes (4|4)

CCDUG May © 2024 IBM Corporation

Data sharing: critical factors

Two factors to preserving data integrity in data sharing

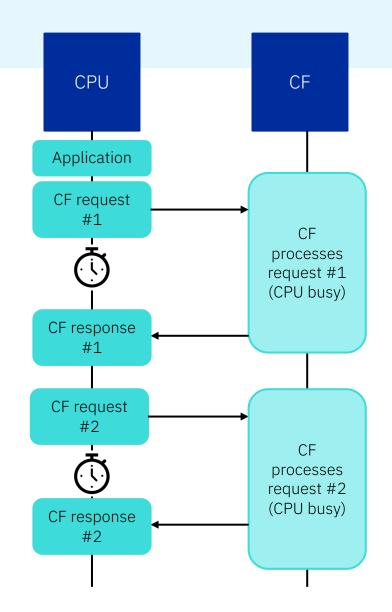
- Inter-system concurrency control global locking
 - Multiple readers OR one writer
- Inter-system *coherency* control *managing changed data*
 - One system changes data pages that also reside in other system(s)

Data sharing overhead based on CPU to manage these factors

- Thousands to tens of thousands of messages per second
 - Early extreme example: 166,114 synchronous lock requests per second (2008)
 - Several sites have exceeded 200,000 synchronous lock requests per second
 - Latest report peaked at over 411,000 synchronous lock requests per second!
 - One report: 643,300 synchronous lock requests per second!

Most CF messages for Db2 or IRLM are synchronous

Host CPU cost for duration of round trip to CF -> CPU busy



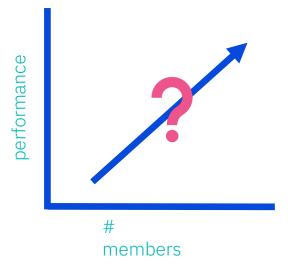
Synchronous messages

Synchronous Request

Most CF messages for Db2 or IRLM are synchronous

Host CPU cost for duration of round trip to CF -> CPU busy

Performance considerations


Performance considerations (1|2)

Db2 CF requests are synchronous relative to the:

- Application for which the CF request is made
- Host processor (GCP or zIIP) that initiated the request
 - Busy for duration of request

Data sharing performance variables

- Hardware configuration
- Lock contention rates
- CF access intensity for locking and caching
 - Percentage of CPU time in Db2
 - Degree of read/write sharing
 - # of locks obtained
 - Access rate to shared data
 - Insert/delete intensity
 - Release of Db2

CCDUG May © 2024 IBM Corporation

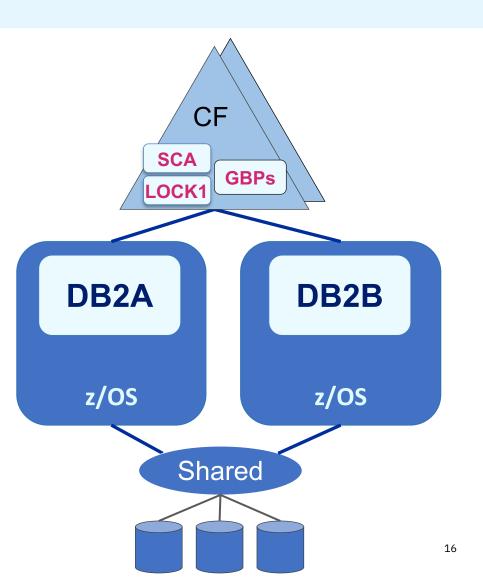
Performance considerations (2|2)

CF link capacity

CF processor capacity

If CF processors too busy, longer CF request service times and busier host processors

Db2 CF structure allocation and definition


- LOCK1

- Lock table large enough to minimize false contention
- Enough record list entries to track change activity
- GBPs
 - Enough directory entries to track the aggregate buffer pools
 - Enough data elements to accommodate high write activity

Distance between systems

- CF requests to remote CFs require about 10 μsec / km round trip

CCDUG May © 2024 IBM Corporation

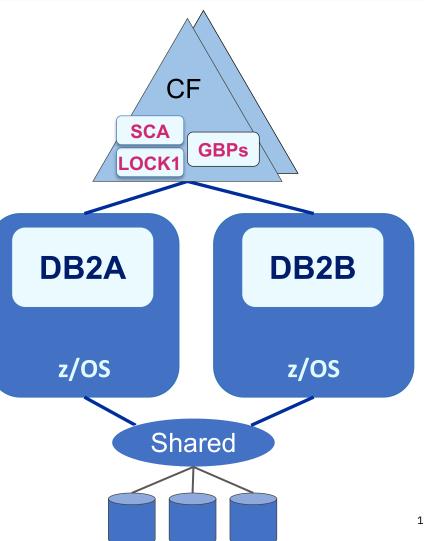
Performance indicators

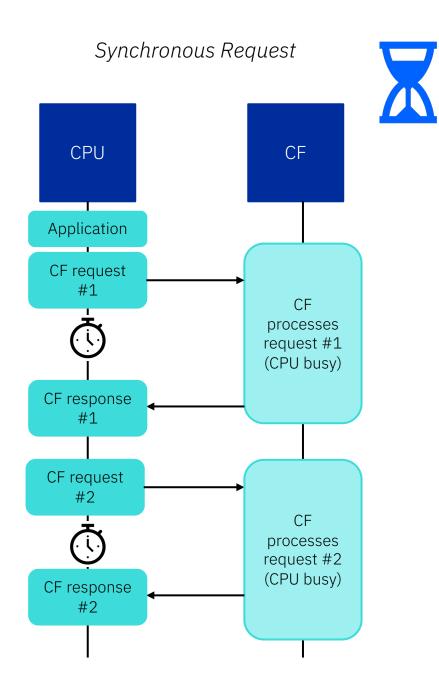
CF performance indicators

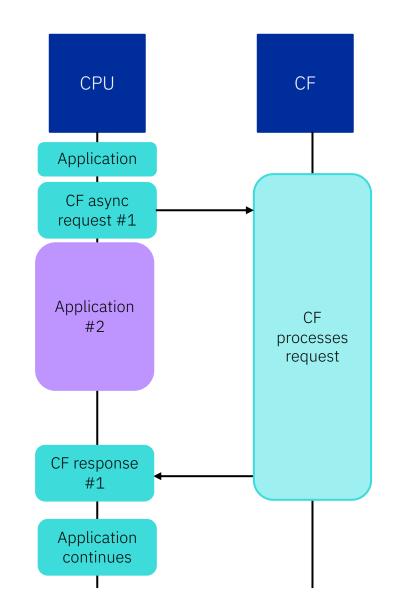
Coupling facility displays and reports

- RMF Monitor III
- RMF CF activity reports

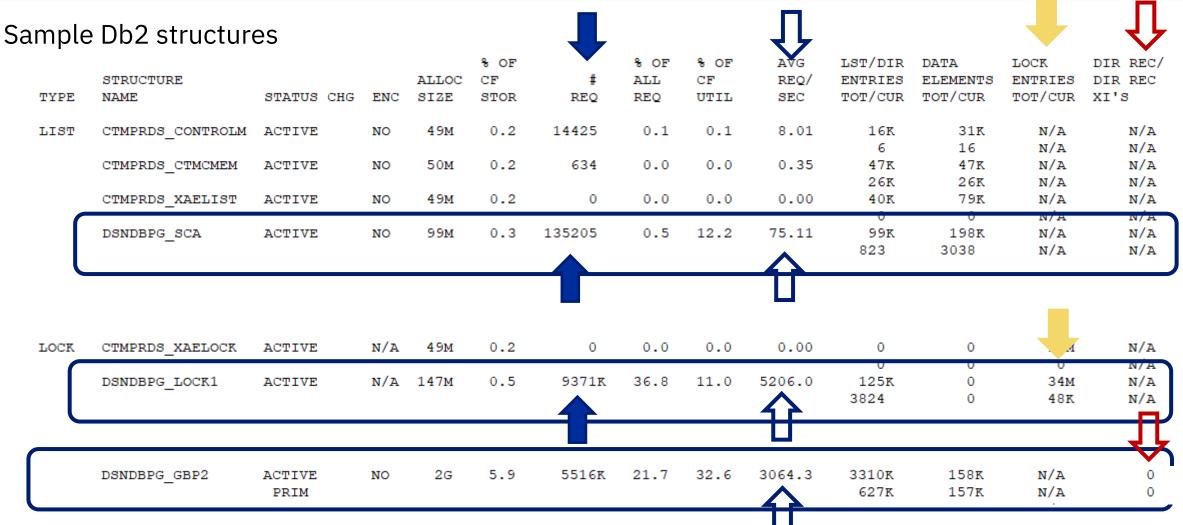
CF request rates by structure


CF processor busy


Structure detail


- Synchronous service times by LPAR
- Asynchronous conversion
 - XES detects service times above a certain level and converts requests to async
 - Frees host CP to perform other tasks
- **Delayed** requests —
- Contention and false contention _

CF channel activity (link traffic)


CCDUG May © 2024 IBM Corporation

CF activity report: structure summary

CCDUG May © 2024 IBM Corporation

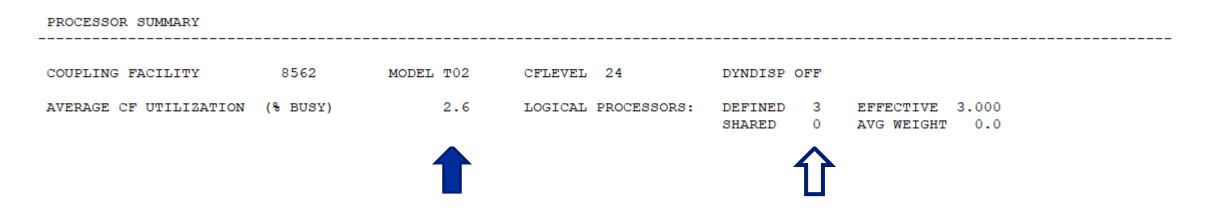
CF activity report: summary section notes

requests over the RMF interval

Average requests per second

Values at right are millions (M) or thousands (K)

- M^=1024* 1024 ; K^=1024


For GBPs:

- Directory reclaims on upper line
- Directory reclaims resulting in cross-invalidation on lower line
 - Non-zero values to be avoided
 - Can cause 'unnecessary' I/O activity
 - Details available with –DIS GBPOOL GDETAIL or in SMF 100

CF activity report: processor summary

Average CF utilization can be a key factor

Production CFs engines should be dedicated to the CF LPAR

CF activity report: structure activity

Db2 lock structure

STRUCTUR	E NAME = I # REQ	DSNDBPG_LOCK1			STS	ACTIVE		- DET.AV					
SYSTEM NAME	TOTAL AVG/SEC		# REQ	% OF ALL	-SERV TIME (MIC) - AVG STD_DEV	REASON	# REQ	% OF REQ	_	G TIME (MIC) STD_DEV		EXTERNAL REQU CONTENTIONS	EST
zOS1	8816K	SYNC	8816K	94.1	2.2 / 0.8	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	9698K
2031	4898	ASYNC	0	0.0	0.0 🔽 0.0	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	10K
		CHNGD	0	0.0	INCLUDED IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	10K
		SUPPR	0	0.0								-FALSE CONT	5729
zOS2	183K	SYNC	183K	1.9	2.6 1.1	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	221K
2002	101.4	ASYNC	0	0.0	0.0 0.0	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	3698
		CHNGD	0	0.0	INCLUDED IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	3697
		SUPPR	0	0.0								-FALSE CONT	955
zOS3	132K	SYNC	115K	1.2	26.9 🖊 3.9	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	146K
2000	73.46	ASYNC	17K	0.2	57.6 41.9	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	3747
		CHNGD	0	0.0	INCLUDED IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	3713
		SUPPR	0	0.0								-FALSE CONT	1763
zOS4	122K	SYNC	83K	0.9	27.6 🛌 3.5	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	148K
2004	67.51	ASYNC	39K	0.4	71.0 51.9	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	923
		CHNGD	0	0.0	INCLUDED IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	811
		SUPPR	0	0.0								-FALSE CONT	456
zOS5	119K	SYNC	97K	1.0	27.2 👝 3.6	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	151K
2000	66.11	ASYNC	22K	0.2	59.0 46.1	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	3634
		CHNGD	0	0.0	INCLUDED IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	-CONT	3598
		SUPPR	0	0.0								-FALSE CONT	645
TOTAL	 9371ĸ	SYNC	9293K	99.2	3.0 4.5	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	 10м
101112	5206	ASYNC	78K	0.8	64.6 48.7	PR WT	ŏ	0.0	0.0	0.0	0.0	REQ DEFERRED	22K
		CHNGD	0	0.0		PR CMP	ŏ	0.0	0.0	0.0	0.0	-CONT	22K
		SUPPR	0	0.0								-FALSE CONT	9548

CCDUG May © 202 BM Corporation

CF activity report: structure activity notes

Db2 lock structure

requests over the RMF interval and average per second

- Anything over 100,000 requests per second is high

Synchronous (SYNC) and asynchronous (ASYNC) service time

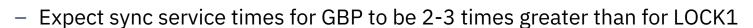
- 3 μsec or less is on same system with IC links
- In this example, longer service times due to remote CF a little over 2 km away
 - Significant percentage converted to async

External request / contention

- CONT = real contention
 - Aim to keep below 2% of external requests
- FALSE CONT = false contention: XES recognizes that two resources hashed to the same lock class
 - Aim to keep below 1% of external requests
 - If too high, increase LOCK1 size and rebuild structure (at least double size of structure, then rebuild, to build larger lock table)

CF activity report: structure activity

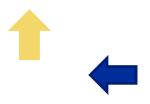
Db2 group buffer pool


STRUCTURE NAME = DSNDBPG_GBP2 # REQ				STATUS =	ACTIVE PR			ENCRY					
SYSTEM NAME	TOTAL AVG/SEC		# REQ			ME (MIC) -	REASON				G TIME (MIC)		
zOS1	4768K	SYNC	4608K	83.5			NO SCH			0.0	0.0	0.0	
2001	2649	ASYNC	160K	2.9			PR WT			0.0	0.0	0.0	
		CHNGD	0		INCLUDED	IN ASYNC					0.0	0.0	
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0	
zOS2	37177	SYNC	37K	0.7	9.8	12.9	NO SCH	0	0.0	0.0	0.0	0.0	
2002	20.65	ASYNC	73	0.0	32.4	30.2	PR WT	0	0.0	0.0	0.0	0.0	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0	
zOS3	1598	SYNC	504	0.0	28.5	4.1	NO SCH	0	0.0	0.0	0.0	0.0	
2000	0.89	ASYNC	1094	0.0	60.0	79.4	PR WT	0	0.0	0.0	0.0	0.0	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0	
zOS4	676K	SYNC	6495	0.1	39.9	15.0	NO SCH	0	0.0	0.0	0.0	0.0	
2004	375.7	ASYNC	670K	12.1		46.5		0	0.0	0.0	0.0	0.0	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0	
zOS5	32709	SYNC	427	0.0	28.8	4.1	NO SCH	0	0.0	0.0	0.0	0.0	
2000	18.17	ASYNC	32K	0.6	52.8	32.5	PR WT	0	0.0	0.0	0.0	0.0	
		CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0	
		SUPPR	0	0.0			DUMP	0	0.0	0.0	0.0	0.0	
TOTAL	 5516ĸ	SYNC	4652K	84 3	 5.1	 5.4	NO SCH		0.0	0.0	0.0	0.0	DATA ACCESS -
TOTAL	3064	ASYNC	863K	15.7		46.1	PR WT		0.0			0.0	READS 2419
	3001	CHNGD	005K	0.0	22.2	10.1	PR CMP					0.0	WRITES 269103
		SUPPR	ŏ				DUMP		0.0	0.0		0.0	CASTOUTS 248112
		SOFER	0	0.0			DOME		0.0	0.0	0.0	0.0	XI'S 1538
	004												

CCDUG May © 2024 M Corporation

CF activity report: structure activity notes

Db2 group buffer pool


requests over the RMF interval and average per second Synchronous (SYNC) and asynchronous (ASYNC) service time

- In this example, longer service times due to remote CF a little over 2 km away
 - Significant percentage converted to async

Data access

- If only writes are non-zero, indicates a secondary group buffer pool

CFRM policy entries for Db2

```
STRUCTURE NAME (DSNDB0P_LOCK1) SIZE (2G)
INITSIZE (1G)
MINSIZE (1G)
REBUILDPERCENT (1)
PREFLIST (PRODCF00, PRODCF01, PRODCF10, PRODCF11)
```

LOCK1

- SIZE (2G) indicates maximum structure size
- INITSIZE (1G) is initial allocation size
- SETXCF commands can increase allocation from 1G to desired value <= 2G
 - Increase only available for record list entries (RLEs) unless rebuild the lock structure
 - Size increase (double or more) plus rebuild required to increase lock table to reduce false contention rate
- ALLOWAUTOALT(YES) recommended to allow XES to adjust between INITSIZE and SIZE
 - Can decrease down to MINSIZE
 - Will only affect RLEs, and not designed for spikes
 - Db2 13: IRLM can trigger LOCK1 allocation increase to add RLEs; should be more responsive than XES increase
- FULLTHRESHOLD > 0 XES will monitor structure size and consider size increase at value specified

CFRM policy entries for Db2

```
STRUCTURE NAME(DSNDB0P_LOCK1) SIZE(2G)
INITSIZE(1G)
MINSIZE(1G)
REBUILDPERCENT(1)
PREFLIST(PRODCF00, PRODCF01, PRODCF10, PRODCF11)
```

LOCK1

- Where is DUPLEX in this definition?
 - It defaulted to DUPLEX(DISABLED)
- DUPLEX(DISABLED) is appropriate for LOCK1 (and SCA) if allocated on external CF
 - Or at least on separate system (CEC) from Db2 members
- In 2-CEC 2-ICF configuration, DUPLEX(ENABLED) system managed duplexing, recommended for LOCK1 and SCA for availability
 - Avoid single point of failure
- For LOCK1, DUPLEX(ENABLED) is very expensive: synchronous system managed duplexing
 - Asynchronous system managed duplexing performs much better
 - Consider DUPLEX(ENABLED, ASYNCONLY) for 2-CEC 2-ICF, or similar, configurations
 - More and more customer experience with async CF duplexing

CFRM policy entries for Db2

STRUCTURE NAME (DSNDB0P_GBP1) SIZE (4137M)
INITSIZE (2121M)
MINSIZE (2121M)
ALLOWAUTOALT (YES)
DUPLEX (ENABLED)
PREFLIST (PRODCF00, PRODCF01, PRODCF10, PRODCF11)

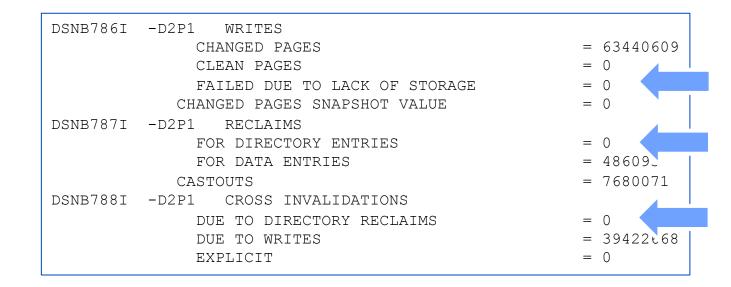
GBPs

- DUPLEX (ENABLED) strongly recommended
 - Availability, not performance
 - Minimal performance impact
- ALLOWAUTOALT(YES) allows XES to adjust ratio of directory entries to data elements and to increase allocation up to SIZE
 - Can also decrease down to MINSIZE
- Changing ratio without ALLOWAUTOALT requires –ALTER GBPOOL command *and* manual structure rebuild
 - Probable increase in application elapsed time during manual rebuild

-DIS GROUPBUFFERPOOL at group level

- -DIS GBPOOL(*) TYPE(GCONN) GDETAIL(*)
 - Contains status and definition information as well as statistics
 - Reports statistics since GBP allocation
- -DIS GBPOOL(*) TYPE(GCONN) GDETAIL(INTERVAL)
 - To monitor an interval, execute this command before and after the desired interval
 - Output messages from second command will show GBP statistics for the interval
- Typical problems due to incorrectly defined GBP
 - Directory entry reclaims
 - XIs due to directory entry reclaims: increased synchronous I/O
 - Writes failed due to lack of storage: application delays, or worse

-DIS GBPOOL GDETAIL status

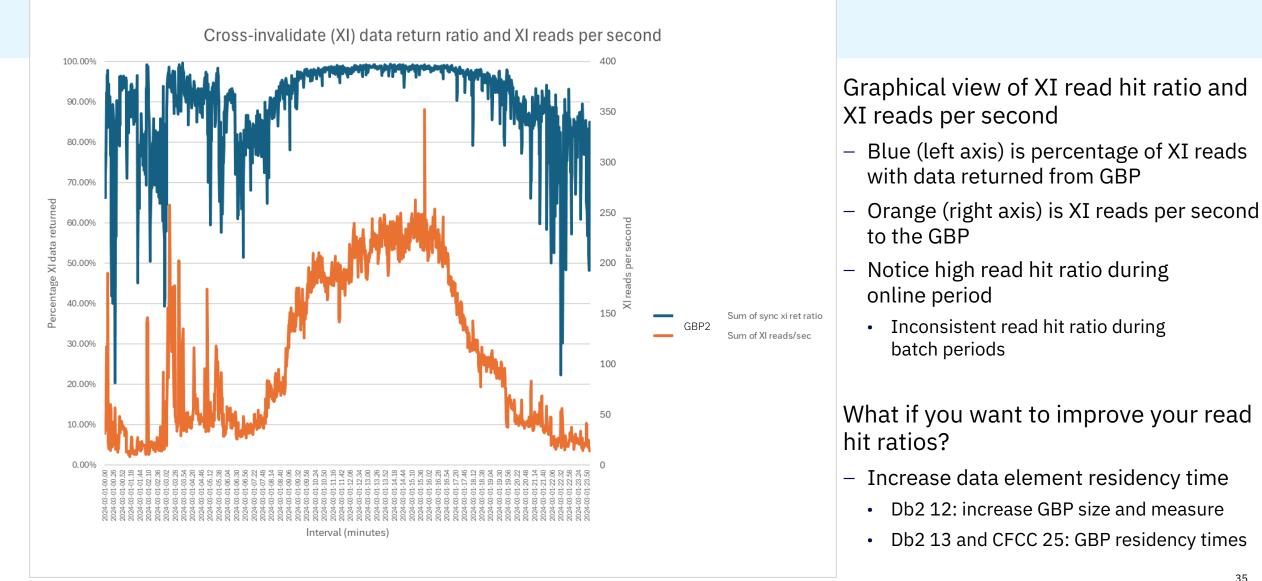

- This excerpt shows the first few messages from the DIS GBPOOL output for GBPO in this case
- Information in these messages does not change frequently
 - Example: directory to data ratio

	-D2P1 DISPLAY FOR GROUP BUFFER POOL GBP0 -D2P1 DB2 GROUP BUFFER POOL STATUS	FOLLOWS
	CONNECTED	= YES
	CURRENT DIRECTORY TO DATA RATIO	= 26
	PENDING DIRECTORY TO DATA RATIO	= 26
	CURRENT GBPCACHE ATTRIBUTE	= YES
	PENDING GBPCACHE ATTRIBUTE	= YES
DSNB756I	-D2P1 CLASS CASTOUT THRESHOLD	= 5, 0
	GROUP BUFFER POOL CASTOUT THRESHOLD	= 25%
	GROUP BUFFER POOL CHECKPOINT INTERVAL	= 4 MINUTES
	RECOVERY STATUS	= NORMAL
	AUTOMATIC RECOVERY	= Ү
DSNB757I	-D2P1 MVS CFRM POLICY STATUS FOR DSNP01G_	_GBPO = NORMAL
	MAX SIZE INDICATED IN POLICY	= 1576960 KB
	DUPLEX INDICATOR IN POLICY	= ENABLED
	CURRENT DUPLEXING MODE	= DUPLEX
	ALLOCATED	= YES
DSNB758I	-D2P1 ALLOCATED SIZE	= 788480 KB
	VOLATILITY STATUS	= NON-VOLATILE
	REBUILD STATUS	= DUPLEXED
	CFNAME	= CF01

-DIS GBPOOL GDETAIL write section

The three highlighted fields should be zero

- WRITES FAILED DUE TO LACK OF STORAGE
- RECLAIMS FOR
 DIRECTORY ENTRIES
- CROSS INVALIDATIONS
 DUE TO DIRECTORY RECLAIMS



- -DIS GROUPBUFFERPOOL at member level
- -DIS GBPOOL(*) TYPE(GCONN) MDETAIL(INTERVAL)
 - To monitor an interval, execute this command before and after the desired interval
 - Output messages from second command will show GBP statistics for the interval
- Performance information:
- Hit ratio for reads to the GBP when the local BP page is cross-invalidated (XI)
- Hit ratio for reads to the GBP when the page is not found in the local BP (NF)
- Lots of other interesting fields

-DIS GBPOOL MDETAIL excerpt

- Key member level information in the fields highlighted by the arrows
- GBP read because local BP page crossinvalidated (XI)
 - A data returned
 - B data not returned
 - A/(A+B) = XI hit ratio -> tuning target
 - Here 99.97%
- GBP read because local BP page not found (NF)
 - C data returned
 - D data not returned
 - C/(C+D) = NF hit ratio (lucky benefit)
 - Here 24.78%%

DSNB773I -D2P1 MEMBER DETAIL STATISTICS SYNCHRONOUS READS DUE TO BUFFER INVALIDATION DATA RETURNED = 1188514Α DATA NOT RETURNED = 16676B DSNB774I -D2P1 DUE TO DATA PAGE NOT IN BUFFER POOL DATA RETURNED = 148271С DATA NOT RETURNED = 1702664 D DSNB789I -D2P1 REGISTER PAGE LIST = 126048PAGES RETRIEVED = 821086 DSNB776I -D2P1 SYNCHRONOUS WRITES CHANGED PAGES = 2160808CLEAN PAGES = 0DSNB777I -D2P1 ASYNCHRONOUS WRITES = 520572CHANGED PAGES CLEAN PAGES = 0 FAILED DUE TO LACK OF STORAGE = 0WRITE-AROUND PAGES = 0 C

Db2 13 and GBP residency time

- IFCID 230 (part of Db2 statistics class 5)
- -DIS GBPOOL GDETAIL
- Higher numbers better
- The longer the data element (Db2 page) is resident in the GBP, the greater likelihood it will be there when requested
- Exception:
- Zero (0) means the data element (or directory entry) has never been stolen, which is the best possible scenario

Suggestions

Suggestions: CFs and structures

Dedicated processors for production CF LPARs

- 2 or more, depending on workload

Use CFSizer tool: https://www.ibm.com/support/pages/cfsizer

- Take output as starting point, round up for INITSIZE
- Define SIZE up to 2 x INITSIZE

Use DUPLEX(ENABLED) and ALLOWAUTOALT(YES) for GBPs

Use ALLOWAUTOALT(YES) for LOCK1 and SCA

DUPLEX setting for LOCK1 and SCA depends upon CF and/or ICF configuration

– This is an availability, as well as performance, topic

Suggestions: Db2 structure monitoring

Monitor sync service times, async conversions and false contention for LOCK1

- Sync service times and async conversion can be dependent upon configuration
- Target: real contention < 2% of requests; false contention < 1% of requests

Monitor GBPs: sync service times, async conversion

- Group level: write failed due to lack of storage, directory reclaims, cross-invalidations due to directory reclaims
- Member level: XI hit ratio, NF hit ratio

Ensure Db2 team and z/OS team communicate to catch issues early

Questions

Thank you!

Tori Felt victoria.felt@ibm.com Keziah Knopp <u>keziah.knopp@ibm.com</u>

Mark Rader <u>mrader@us.ibm.com</u>

CCDUG May © 2024 IBM Corporation

GSE UK VIRTUAL CONFERENCE 2024

Session feedback

- Submit your feedback at https://conferences.gse.org.uk/2024V/feedback/7J
- Make sure you are signed into MyGSE
- The session code is 7J

* This is the three digit number on the bottom of your delegate badge											
the length	n of this pr	esention c	orrect?								
o 4 = "Too	Short" 5 =	"OK" 6-9 =	"Too Long'	1							
$\overset{2}{\bigcirc}$	°		5 O	6 ()	Ŏ	Ő	°				
his preser	ntion meet	t your requ	lirements?	,							
o 4 = "No"	5 = "OK" 6-	9 = "Yes"									
$\overset{^{2}}{\bigcirc}$	³	$\overset{4}{\bigcirc}$	O	6 ()	Ŏ	Ő	$\overset{\circ}{\bigcirc}$				
the sessio	n content	what you	expected?								
o 4 = "No"	5 = "OK" 6-	9 = "Yes"									
$\overset{2}{\bigcirc}$	\bigcirc^3		5 ()	6 ()	Ŏ	°	°				
	the length $\mathbf{o} 4 = \mathbf{"Too}$ $\stackrel{2}{\bigcirc}$ his preser $\mathbf{o} 4 = \mathbf{"No"}$ $\stackrel{2}{\bigcirc}$ the sessio	the length of this pr o 4 = "Too Short" 5 = $\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	the length of this presention of $4 = \mathbf{"Too Short" 5} = \mathbf{"OK" 6-9} = \frac{2}{3} \qquad 4$ his presention meet your required $0 = 1 \mathbf{No" 5} = \mathbf{"OK" 6-9} = \mathbf{"Yes"}$ $\frac{2}{3} \qquad 4 = \mathbf{No" 5} = \mathbf{"OK" 6-9} = \mathbf{"Yes"}$	the length of this presention correct? a 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	the length of this presention correct? a 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	the length of this presention correct? a 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$ his presention meet your requirements? a 4 = "No" 5 = "OK" 6-9 = "Yes" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$ $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$ the session content what you expected? b 4 = "No" 5 = "OK" 6-9 = "Yes"	the length of this presention correct? o 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8$ his presention meet your requirements? o 4 = "No" 5 = "OK" 6-9 = "Yes" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8$ the session content what you expected?	the length of this presention correct? a 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$ his presention meet your requirements? a 4 = "No" 5 = "OK" 6-9 = "Yes" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$ the session content what you expected? b 4 = "No" 5 = "OK" 6-9 = "Yes"	the length of this presention correct? a 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$ his presention meet your requirements? a 4 = "No" 5 = "OK" 6-9 = "Yes" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$ the session content what you expected? b 4 = "No" 5 = "OK" 6-9 = "Yes"	the length of this presention correct? a 4 = "Too Short" 5 = "OK" 6-9 = "Too Long" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$ his presention meet your requirements? a 4 = "No" 5 = "OK" 6-9 = "Yes" $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9$ the session content what you expected? b 4 = "No" 5 = "OK" 6-9 = "Yes"	

1. What is your conference registration number?