

Python Tools of IBM Db2 for Implementing AI Systems

Shaikh Quader

AI Architect, IBM Db2

May 15, 2024

Prepared for:

CCDUG 2024

Agenda

- Introducing Key ML Concepts
- The role of RDBMS and Open-source on ML
- Key Challenges to Enterprise ML
- IBM Db2's Support for Open-source and Enterprise ML
- Demo: Creating and Deploying a Python ML Pipeline on Db2
- Questions

Your Amazon.ca Deals See All Departments

Hello Shaikh Quader,

Based on your recent activity, we thought you might be interested in this.

Machine Learning in Action

Simon Sinek Price: CDN\$ 21.7	Simon Sinek Price: CDN\$ 21.78				
	Learn more				
Find Great Deals on M	Millions of Items Store	ewide			

Machine Learning across the Industries

Finance and Banking

- Risk analysis
- Credit scoring
- Client analysis
- Fraud detection
- Trading exchange forcasting

.............................

- Price optimization
- Demand forecasting
- Price forecasting (for dynamically changing prices eg. fuel costs)

Retail and e-Commerce

- Fraud detection
- Price optimization
- Recommendations
- Demand forecasting
- Customer segmentation

Healthcare and Life Sciences

- Identifying at-risk patients
- Increase diagnostic accuracy
- Insurance product cost optimization

Sales and Marketing

- Price optimization
- Churn rate analysis
- Upsell opportunity analysis
- Customer lifetime value prediction
- Market and customer segmentation
- Sentiment analysis in social networks

•••

Other

- Object recognition (photo, video, etc.)
- On-line dating personality matching
- Content recommendations (*music, movies, articles, news, etc.*)

Artificial Intelligence, Machine Learning, and Deep Learning

Artificial Intelligence (AI) Human intelligence exhibited by machines

Reasoning

- Natural Language Processing (NLP)
- Planning

Machine Learning (ML) An approach to achieve Al

- Gradient Boosting Machine (GBM)
- Support Vector Machine (SVM)
- Logistic Regression
- Factorization Machines (FM)
- Field-aware Factorization Machines (FFM)

Deep Learning (DL) A technique for implementing ML

Deep Neural Networks

- Deep Belief Networks
- Recurrent Neural Networks

What is Machine Learning?

"Machine learning is an approach to (1) learn (2) complex patterns from (3) existing data and use these patterns to make (4) predictions on (5) unseen data." ^[1]

[1] [Huyen, Chip. Designing Machine Learning Systems. O'Reilly Media, Incorporated, 2022.]

Common Machine Learning Techniques

Regression (supervised learning)

- Predict a quantity/continuous value
- Linear regression, polynomial regression, ...

Classification (supervised learning)

- Predict a label/category
- Binary or multiclass

Clustering (self-supervised learning)

• Group similar objects together

What will my future sales look like?

Will this client default on their loan?

Are there similarities among subgroups of customers at my company?

Is an email a spam or a ham? (Classification ML)

É Safari File Edit	View History Bookmarks	B Develop Window	Help 🛈 🕻	C 會 🖫			
	a mail.goo	gle.com/mail/u/0/#spam	Ċ				
Google	in:spam		۹		•		
Mail -	C .	More *	1-38 of 38	>	10 × 1		
COMPOSE	Delete all spam message	Delete all spam messages now (messages that have been in Spam more than 30 days will be automatically deleted)					
Sent Mail	🗌 📄 🗋 Australian M	Marketing Lis. Let's	make 2018 great -	Hello	Jan 23		
Drafts		(no s	subject) - http://hono	ur.pa	Jan 20		
All Mail	🔲 🚖 🕞 Inkspot	Two	for the price of one	Jan 18			
Trash	🗌 🏠 🕞 Diana	hi - \	You seem like my typ	be an	Jan 18		
▶ Categories	🗆 🚖 🕞 Svetlana	hi - `	You seem like my typ	Jan 17			
[Imap]/Archive	🗆 🚖 🕞 Oksana	hi - `	You seem like my typ	Jan 17			
[Imap]/Drafts [Imap]/Outbox	🗌 🚖 🕞 Kseniya	hi - `	You seem like my typ	pe an	Jan 17		

What is the right purchase price of a house? (Regression ML)

Quiz: predicting salary raise – what kind of ML is this?

How does ML work? [2]

Training Examples

Model

Data – storage, regulations, scale, quality **Model** – infrastructure, compute resources, latency, integration

Integrating ML with Apps is both complex and slow

Python-based ML Frameworks Are Most Popular

ML Frameworks Usage

[2021 Kaggle Data Science Survey]

66%

of enterprises rely on relational data for their ML models.

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017 (based on 2017 Kaggle survey of 16,000 ML practitioners)

Open-Source Machine Learning with IBM Db2

Benefits of Machine Learning with Python UDFs

- Train in your model development environment of choice
 - Training can be accelerated via GPUs
- Allows for transformations and algorithms not found natively in Db2
- Low-latency predictions, inferencing where the data lives
- Predict (in-DB, call from app) via SQL
- Incorporate into data entry workflow through triggers (insert and score)

Python UDFs – The Basics

- Partially documented in the Db2 documentation; more information (e.g. PYTHON_PATH) in the Db2 Warehouse documentation)
- Linux-only X86 and PPCLE
- Python 3.6+ works
- Function types: Scalar (UDSF), Table (UDTF), Aggregate (UDAF)
- UDF must be defined as fenced
- DPF/pureScale: Copy Python source file (.py) to same location on each node
- Set PYTHON_PATH to your Python runtime executable
 - e.g. db2 update dbm cfg using python_path /usr/bin/python3
 - Python executable must be accessible by the fenced user ID

Demo: Creating a Scikit-Learn (Python) Model and Deploying the Model on IBM Db2

ML Use Case: Predicting If a Flight will Arrive On Time

Demo Steps

- 1. Set up Python Notebook and Db2 Connection
- 2. Load ML Data from Db2 into Python Runtime
- 3. Exploring the Data Set Finding Issues
- 4. Creating a ML Pipeline
- 5. Defining a Python UDF for ML Inferencing
- 6. Registering the Python UDF on Db2
- 7. Creating a Db2 Table to Store Predictions
- 8. Retrieving Predictions from Db2

Imports and Db2 Connection

import pandas as pd

from sklearn.compose import ColumnTransformer, make_column_selector, make_column_transformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
import numpy as np
from joblib import dump
from sklearn.linear model import LogisticRegression

Load Db2 Magic Commands:

Import Python Packages:

!wget https://raw.githubusercontent.com/IBM/db2-jupyter/master/db2.ipynb

%run db2.ipynb

Connect to Db2 database:

%sql CONNECT TO db2sample USER user1 USING password HOST mydb2host.mycompany.com PORT 50000

Bringing ML Training Dataset from Db2

SQL Query:

query = %sql SELECT * FROM IDUG.FLIGHTS2
df = pd.DataFrame(query)

(Rows, Columns):

(1000000, 19)

df.shape

Sample Rows with a Subset of Columns

df[cols_show].sample(5)

	MONTH	DAYOFWEEK	UNIQUECARRIER	ORIGIN	DEST	DEPDELAY	TAXIOUT	WHEELSOFF	FLIGHTSTATUS
923730	3	1	YV	PHX	PSP	0.0	26	2031	1
47590	7	4	FL	TPA	ATL	-7.0	9	627	0
35844	4	6	DL	LAX	JFK	-5.0	24	1259	0
141217	3	1	WN	LAS	OMA	10.0	11	1526	0
132676	1	2	WN	DAL	LBB	6.0	8	2024	1

Checking For Missing Values

df.isnull().sum()

YEAR	0
QUARTER	0
MONTH	0
DAYOFMONTH	0
DAYOFWEEK	0
UNIQUECARRIER	0
ORIGIN	0
DEST	0
CRSDEPTIME	0
DEPTIME	0
DEPDELAY	63
DEPDEL15	63
TAXIOUT	0
WHEELSOFF	0
CRSARRTIME	0
CRSELAPSEDTIME	0
AIRTIME	0
DISTANCEGROUP	0
FLIGHTSTATUS	0

Data Preprocessing To-Dos:

□ 1. Replace missing values in DEPDELAY and DEPDELAY15 columns

Checking Column Types

df.dtypes

YEAR	int64
QUARTER	int64
MONTH	int64
DAYOFMONTH	int64
DAYOFWEEK	int64
UNIQUECARRIER	object
ORIGIN	object
DEST	object
CRSDEPTIME	int64
DEPTIME	int64
DEPDELAY	float64
DEPDEL15	float64
TAXIOUT	int64
WHEELSOFF	int64
CRSARRTIME	int64
CRSELAPSEDTIME	int64
AIRTIME	int64
DISTANCEGROUP	int64
FLIGHTSTATUS	int64

Data Preprocessing To-Dos:

I. Replace missing values in DEPDELAY and DEPDELAY15 columns
 2. Convert object (string) columns into numeric

Checking Value Range in the Numeric Cols

df.select_dtyp	es(inc	lude=nj	<pre>p.number).describe().iloc[[3, 7]].transpose()</pre>	Data Preprocessing To-Dos:	
	min	max		1. Replace missing values in DEPDELAY and DEPDELAY15 columns	
YEAR	2009.0	2018.0			
QUARTER	1.0	4.0		2. Convert categorical (object) columns into	
MONTH	1.0	12.0		numeric	
DAYOFMONTH	1.0	31.0		□ 3. Scale numeric values into the same rang	
DAYOFWEEK	1.0	7.0		NTSP ²	
CRSDEPTIME	1.0	2359.0			
DEPTIME	1.0	2400.0			
DEPDELAY	-62.0	1767.0			
DEPDEL15	0.0	1.0			
TAXIOUT	1.0	232.0			
WHEELSOFF	1.0	2400.0			
CRSARRTIME	1.0	2400.0			
CRSELAPSEDTIME	18.0	700.0			
AIRTIME	7.0	703.0			
DISTANCEGROUP	1.0	11.0			
FUGHTSTATUS	0.0	1.0			

Creating a Data Preprocessing Pipeline

Data Preprocessing:

- 1. Replace missing values in DEPDELAY and DEPDELAY15 columns
- 2. Convert categorical (object)
 columns into numeric
- Scale numeric values into the same range

preprocessing = make_column_transformer(
 (num_pipeline, make_column_selector(dtype_include=np.number)),
 (cat_pipeline, make_column_selector(dtype_include=np.object))

Creating a ML Classification Pipeline using Scikit-Learn

```
pipe lr = make pipeline(preprocessing,
Define the ML Pipeline
                                               LogisticRegression(random state=1,
                                                                   solver='lbfgs'))
                      pipe lr.fit(X, y)
Train a ML Model
                      predictions = pipe_lr.predict(X_test)
Evaluate the Trained
                      pipe_lr.score(X_test, y_test) * 100
     Model
                      89.4365
Export the Trained
                      dump(pipe_lr, 'pipe_lr.joblib')
  ML Pipeline
```

%%writefile myUDF.py

#Imports

import nzae import pandas as pd from joblib import load import numpy as np import sklearn

class full_pipeline(nzae.Ae):

Load deployment assets
pipe_lr = load('/home/db2inst1/pipe_lr.joblib')

Collect rows into a single batch
batchsize = 10000
rownum = 0
row_list = []
for row in self:
 row_list.append(row)
 rownum = rownum+1

Collect the rows into a dataframe
df = pd.DataFrame(row_list, columns=input_cols)

Call model to make prediction
predictions = pipe_lr.predict(df)

Calculate probability that flight will be delayed
probability_delayed = pipe_lr.predict_proba(df)[:,1]

Return the result

row_list = []
rownum = 0
self.done()
full_pipeline.run()

Registering the Python UDF

CREATE OR REPLACE FUNCTION

FLIGHT_PREDICTER(SMALLINT, SMALLINT, SMALLINT, SMALLINT, SMALLINT, VARCHAR(8), VARCHAR(3),

VARCHAR(3), SMALLINT, SMALLINT, SMALLINT, SMALLINT, SMALLINT, SMALLINT, SMALLINT,

SMALLINT, SMALLINT)

RETURNS TABLE (DATE INTEGER,ORIGIN VARCHAR(3), DEST VARCHAR(3), CARRIER VARCHAR(3), CRSDEPTIME SMALLINT, CRSARRTIME SMALLINT,PREDICTION SMALLINT,PROB_DELAYED DOUBLE) LANGUAGE PYTHON PARAMETER STYLE NPSGENERIC FENCED NOT THREADSAFE NO FINAL CALL DISALLOW PARALLEL NO DBINFO DETERMINISTIC NO EXTERNAL ACTION CALLED ON NULL INPUT NO SQL EXTERNAL NAME '/home/db2inst1/myUDF.py'

Creating a Db2 Table to Store Predictions

%%sql
DROP TABLE IF EXISTS IDUG.PREDICTIONS

%%sql CREATE TABLE IDUG.PREDICTIONS(DATE INTEGER, ORIGIN VARCHAR(3), DEST VARCHAR(3), CARRIER VARCHAR(3), CRSDEPTIME SMALLINT, CRSARRTIME SMALLINT, PREDICTION SMALLINT, PROB_DELAYED DOUBLE)

Generating Batch Predictions Using Scikit-Learn Pipeline Deployed on Db2

Retrieving the Predictions from Db2

query = %sql SELECT * FROM IDUG.PREDICTIONS
result = pd.DataFrame(query)

Lets look at the first 10 rows of our UDTF's output
result.head(10)

	D/4 E	onnant	220.	e/uniiEn		01107411111112		
0	20201215	SFO	MIA	AA	2350	805	1	0.86
1	20200614	HOU	DCA	WN	2000	2355	1	0.77
2	20200627	DFW	PSP	AA	1655	1747	1	0.99
3	20200203	DFW	SLC	00	1233	1425	1	0.89
4	20200108	PHX	ORD	AA	145	605	0	0.07
5	20201016	ORD	EWR	UA	1812	2132	0	0.07
6	20200914	ORD	BOS	AA	2155	100	1	0.94
7	20200609	PDX	PHX	WN	2005	2240	0	0.25
8	20200226	BOS	TPA	B6	2015	2335	0	0.35
9	20200608	BUF	BOS	B6	1510	1633	0	0.00

DATE ORIGIN DEST CARRIER CRSDEPTIME CRSARRTIME PREDICTION PROB_DELAYED

Large Batch Scoring with Db2

- Weekly Demand Forecasting
- Quarterly Sales Pipeline Prioritization
- Customers Churn Prediction
- Daily Support Tickets Prioritization
- Product Feature Requests Prioritization

Db2's Solution: Parallelism and Secure Storage

Real-time Scoring with Db2

- Network Anomaly Detection
- Product Recommendations
- Instant Mortgage Pre-Qualification

Db2's Solution: co-location of data and ML in the db and trigger

AI App Development Experience

Db2 Experience Goal: make consuming AI as simple as writing a SQL Query AI App ML or Non-ML Db2 Developer data Requests (SQL) Data ML Runtime and Model SQL API for inferencing ٠ **Developer's Experience:** Simple data access – SQL -COS – governance, \$, and setup efforts In App heavy data processing filtering, combining

- Security
- Scalability

Demos and **Tutorials**

Demos:

- <u>Build a Customer Segmentation Model with Db2</u> (K-Means Clustering)
- Build a Classification Model with Db2 (Decision Tree)
- Build a Regression Model with Db2 (Linear Regression)
- Integrate a Db2-native model with a Cognos Dashboard
- Deploying a ML Model Trained on Cloud Pak for Data to Db2
- <u>Automated AI Model Development with IBM Cloud Pak for Data and Db2</u> Tutorials:
- <u>Tutorials and Jupyter Notebooks</u>
- How to Build an in-database Linear Regression Model with IBM Db2
- How to build a decision tree model in IBM Db2

Documentation:

• Db2 11.5 Knowledge Center

Thank You

Speaker: Shaikh Quader Company: IBM Email: shaikhq@ca.ibm.com in LinkedIn: /in/shaikhquader Medium: @shaikhquader