
IBM Db2 LUW Webinar Series

Db2 Cloud Object Storage Architecture and Performance Considerations

May 7 2024

Robert Hooper Kostas Rakopoulos

Notices and disclaimers

© 2024 International Business Machines Corporation. All rights reserved.

This document is distributed "as is" without any warranty, either express or implied. In no event shall IBM be liable for any damage arising from the use of this information, including but not limited to, loss of data, business interruption, loss of profit or loss of opportunity.

Customer examples are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the views of IBM.

Not all offerings are available in every country in which IBM operates.

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

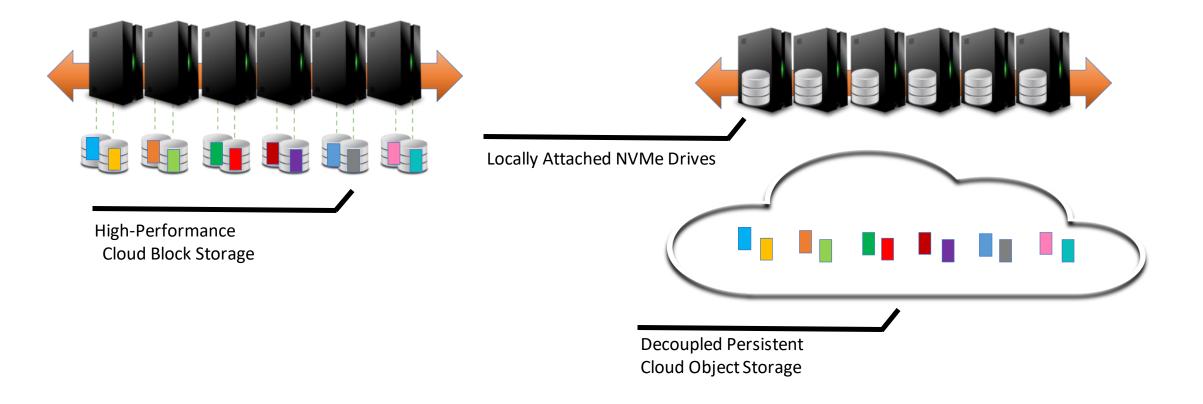
IBM, the IBM logo, and ibm.com are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at: www.ibm.com/legal/copytrade.shtml.

Certain comments made in this presentation may be characterized as forward looking under the Private Securities Litigation Reform Act of 1995.

Forward-looking statements are based on the company's current assumptions regarding future business and financial performance. Those statements by their nature address matters that are uncertain to different degrees and involve a number of factors that could cause actual results to differ materially. Additional information concerning these factors is contained in the Company's filings with the SEC.

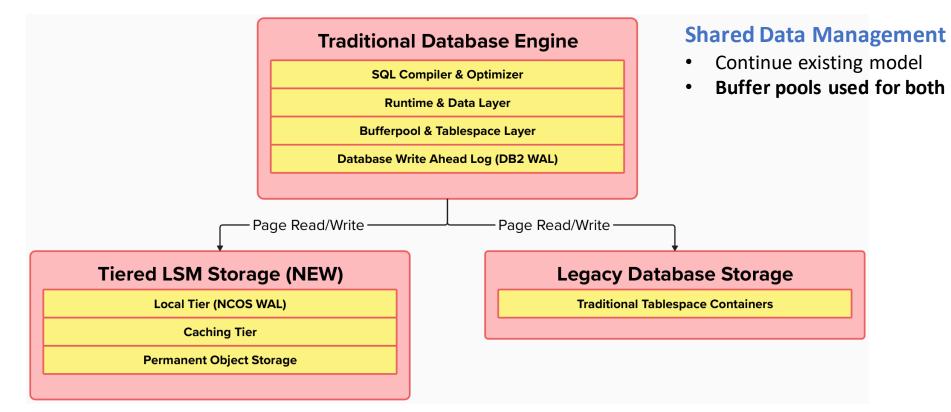
Copies are available from the SEC, from the IBM website, or from IBM Investor Relations.

Any forward-looking statement made during this presentation speaks only as of the date on which it is made. The company assumes no obligation to update or revise any forward-looking statements except as required by law; these charts and the associated remarks and comments are integrally related and are intended to be presented and understood together.


Object Storage

- ✓ Near unlimited scalability
- ✓ Extreme durability + reliability
- \checkmark High throughput
- High latency (but can be compensated for) + storage
 - model (immutable)

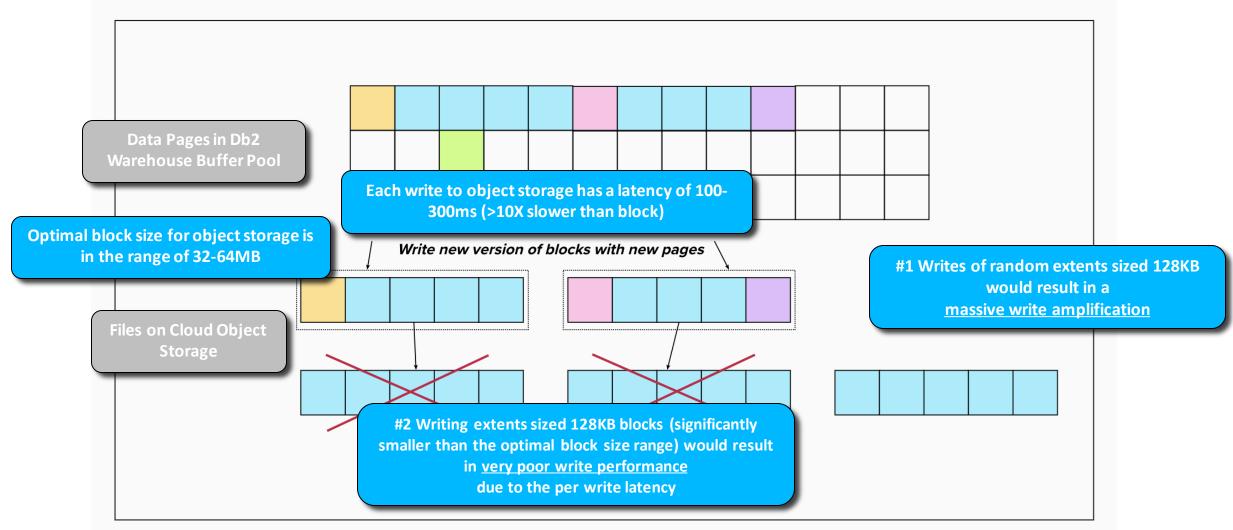
Cloud Object Storage (COS)


Evolution of the Storage Architecture

@ 10-30ms latency each (6 IOPS/GB)

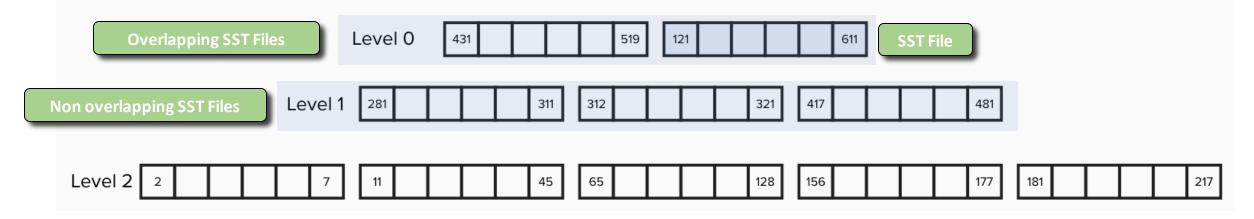
@ 100-300ms latency per operation

Architecture Overview

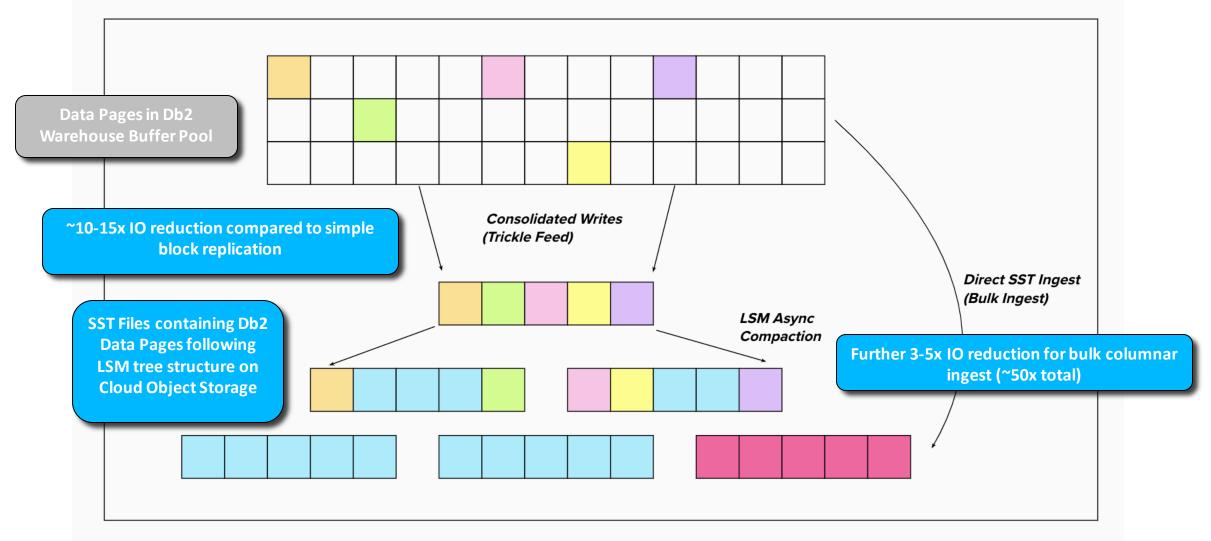

NCOS TABLESPACES

- Write to object storage
- Dedicated NVMe cache
- Columnar only
- Latency mitigation

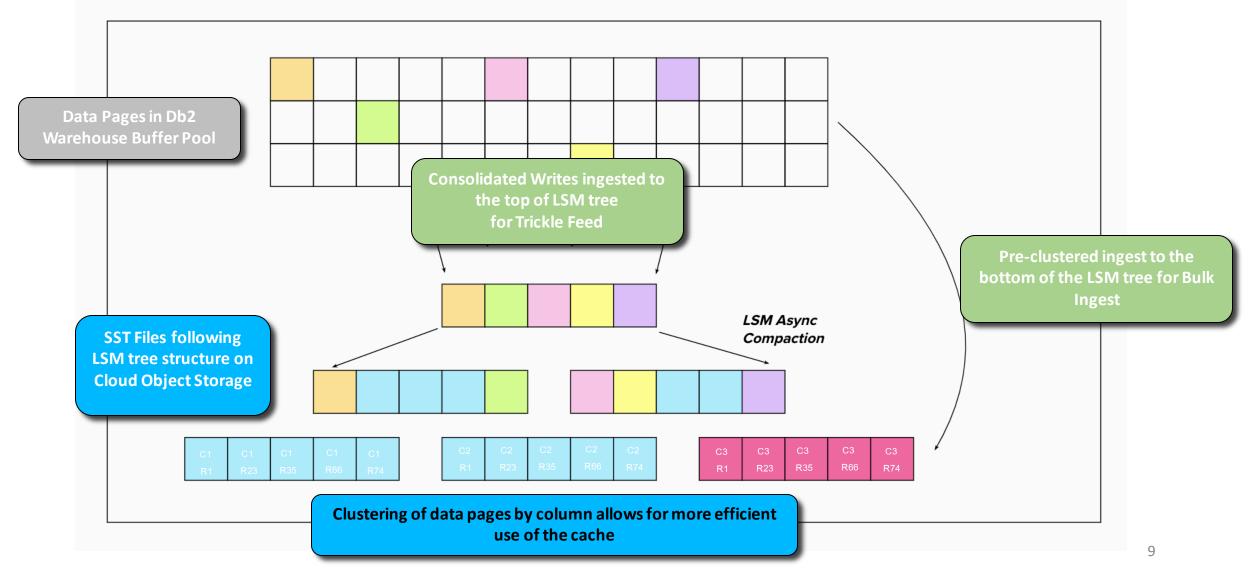
Non-NCOS TABLESPACES


- Continue existing storage model
- Db2 WAL used for both

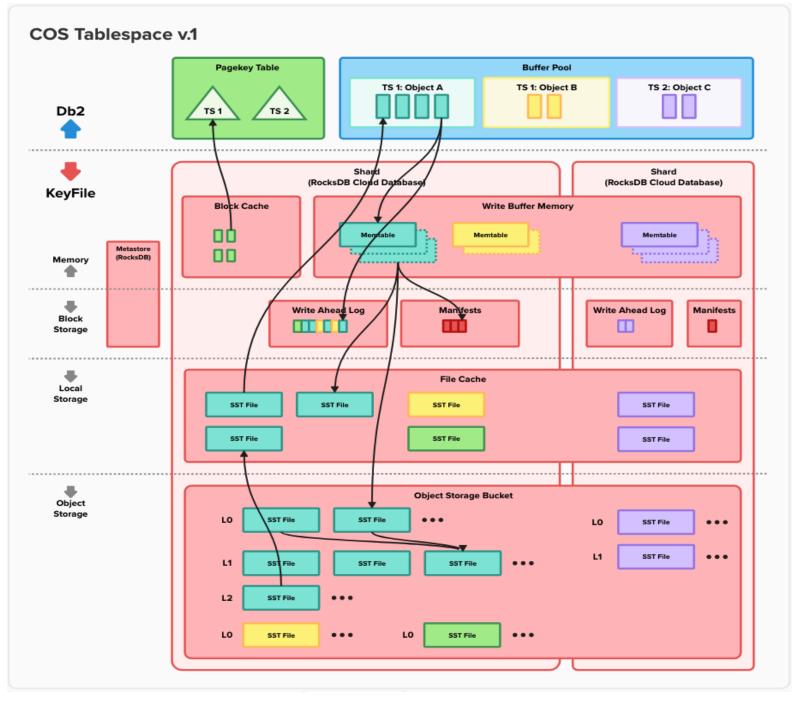
Pitfalls of a naïve storage model


Background On LSM trees

• RocksDB is used under the hood. Log Structured Merge trees (LSM tree) is an index structure designed for on disk low-cost indexing for data with a high insert rate.



- There are three main characteristics that make it really interesting as a storage model for Db2 Warehouse:
 - 1. It follows an append-only write mode, where its SST files are only written once, which is ideal for cloud object storage and to simplify cache management.
 - 2. It is designed for self-optimization, through its background compaction process that moves data through the fully ordered levels.
 - 3. It is built for a high-volume ingest rate, ideal for data warehouses.


LSM Tree based page IO

Column Group Clustering within LSM tree

Looking Deeper Under the Hood

10

Using Native COS Tables

These are DBA tasks. Developers can use NCOS tables with no changes to their applications.

Step 1: Catalog Storage Access Alias

CATALOG STORAGE ACCESS ALIAS stoaccess1 VENDOR S3 SERVER https://s3host.com USER db2inst1 PASSWORD db24ever CONTAINER db2bucket OBJECT default DBUSER db2inst1

Step 2: Create Storage Group

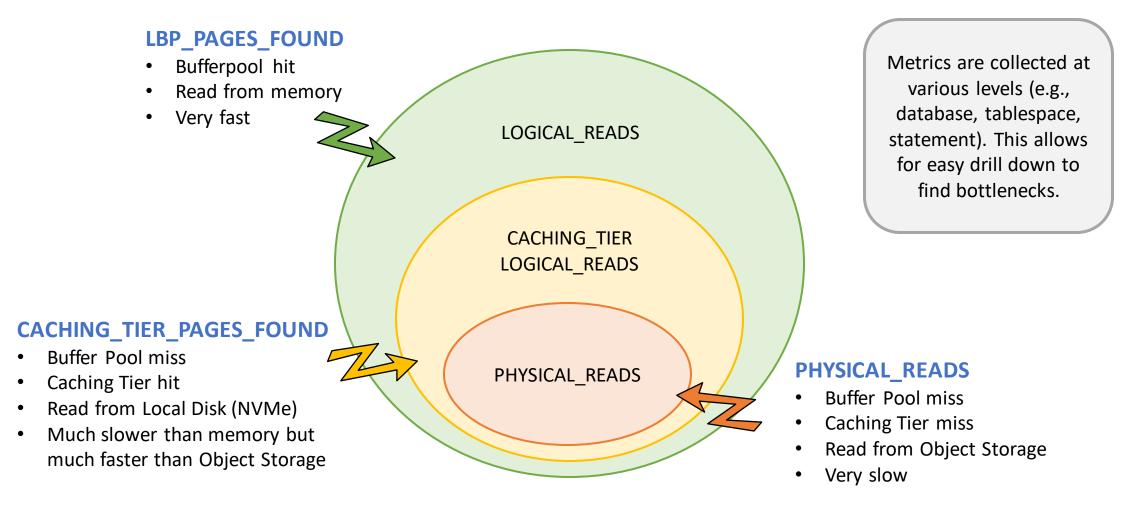
CREATE STOGROUP stogroup1
ON 'DB2REMOTE://stoaccess1'

Step 3: Create Tablespace

CREATE TABLESPACE tbsp1 USING STOGROUP stogroup1

Step 4: Create Table

CREATE TABLE **t1** (c1 INTEGER) IN **tbsp1** ORGANIZE BY COLUMN


Demo: Setup Steps

Native COS Monitoring – Writes

- New types of writes
 - LOCAL_TIER_WRITE
 - Persistent storage (e.g., network attached block storage) write
 - CACHING_TIER_WRITE
 - Very fast, ephemeral storage (e.g., local NVMe) write
 - REMOTE_STORAGE_TIER_WRITE
 - Object storage write (excludes writes due to compaction)
 - COMPACTION_WRITE
 - Object storage write due to compaction
- For each write type we record time, bytes and number of requests

Demo: Monitoring Writes

Native COS Monitoring – Reads

Demo: Monitoring Reads

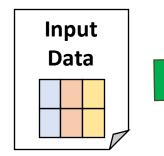
Native COS Performance – Key Warehouse Use Cases

Bulk Insert

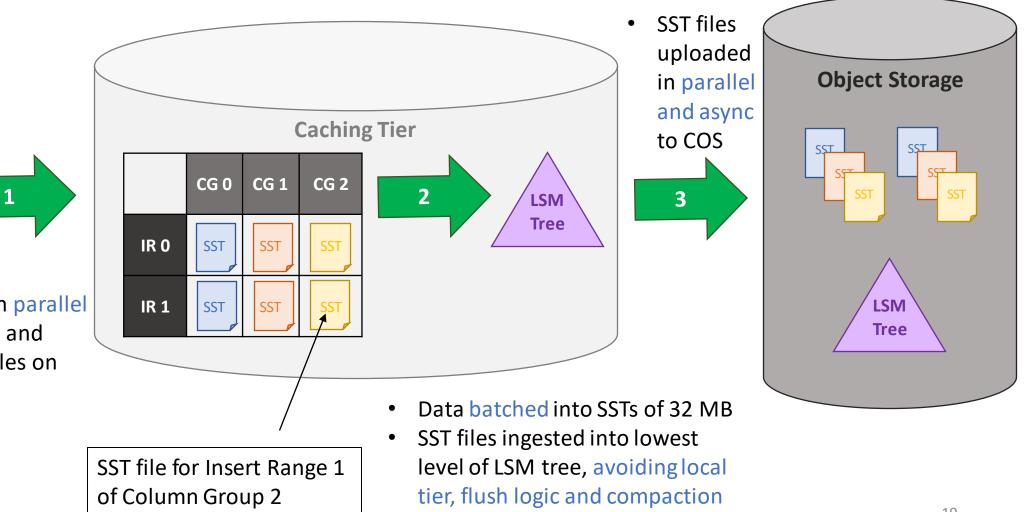
- Millions of rows per transaction
- Inserts directly into LSM tree

• Trickle Feed Insert

- Tens to Thousands of rows per transaction
- Utilizes Write Ahead Log (persistent block storage) to delay writing to COS
- Optimized for Db2 use case
 - Multiple RocksDB Column Families per Table to avoid LSM L0 compaction bottleneck
 - Refined RocksDB Write Buffer Manager MemTable victimization to avoid early flushes

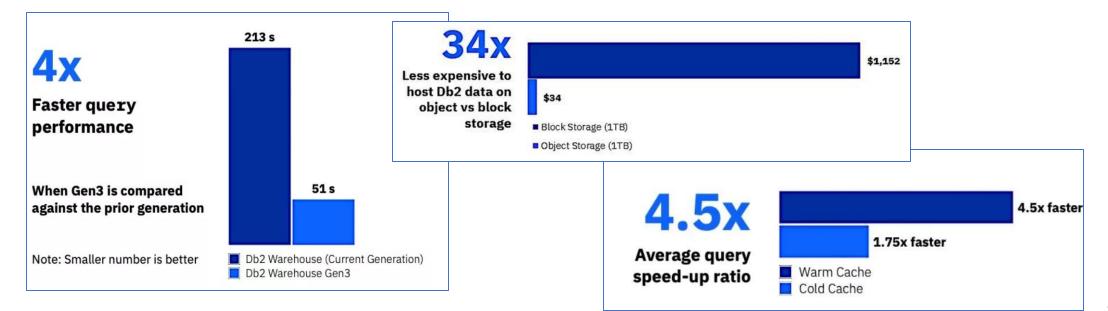

• Queries

- Concurrent queries of varying complexity
- Utilizes Db2's prefetching to avoid synchronous reads from COS


High Performance with COS Latency

	Parallelism	Batching	Asynchronous	Caching
Bulk Insert	 SST file generation SST file uploads to COS 	 SST file generation target size of 32 MB 	 SST file generation SST file upload (before commit) 	 SST file generation Write through cache
Trickle Insert	Uploads to COS	 Write buffer size of 32 MB (leading to SST files of 32 MB) 	 Write buffer flushes Uploads to COS (durability via WAL) 	• Write through cache
Queries	 Reads from COS and Caching Tier 	 Compaction Prefetching from COS and Caching Tier 	 Prefetching from COS and Caching Tier 	 Reads from Caching Tier

Optimizing Bulk Insert: Bulk Write Mode



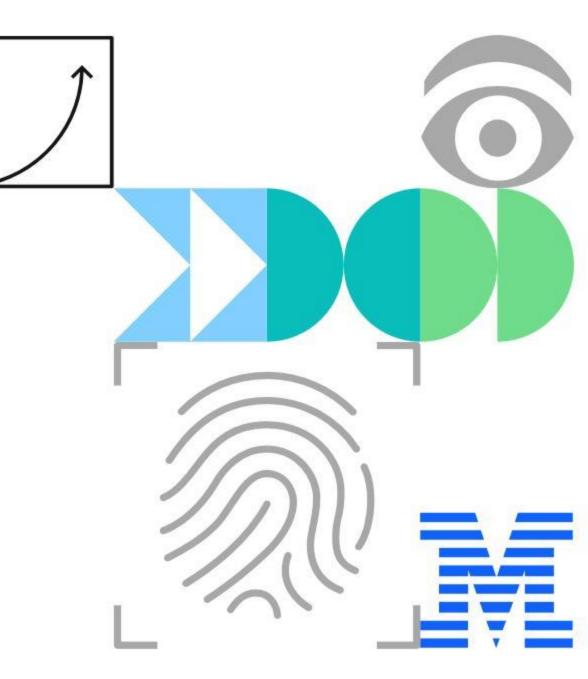
 Data written in parallel (by CG and IR) and async to SST files on Caching Tier

NCOS Tables Outperform Previous Gen

- Big performance gains and massive storage cost savings over previous generation of Db2 Warehouse on Cloud
 - 4x faster query performance
 - 4.5x average query speed up (cold cache)
 - 34x less expensive storage costs
 - Read more here: <u>https://www.ibm.com/blog/db2-warehouse-delivers-4x-faster-query-performance-than-previously-while-cutting-storage-costs-by-34x/</u>

IBM TechXchange

IBM Db2 LUW Webinar Series


Thank you!

Continue the Conversation:

Robert Hooper (robert.christopher.hooper@ibm.com) Kostas Rakopoulos (kostasr@ca.ibm.com)

Discussion Forum: <u>https://community.ibm.com/community/user/datamanagement/discussion/db2-cloud-object-storage-architecture-and-performance-considerations-webinar</u>

Join the Db2 Community! https://community.ibm.com/community/user/datamanagement/home

Backup

Demo Screenshot – Trickle Insert Monitoring

MBER LOCAL_T	IER_WRITES CACHING_	TIER_WRITES COMPAC	TION_WRITES REMO	DTE_TIER_WRITES	
0	7836	3543	10	13	
1	8045	9193	59	50	
2	7971	3985	25	28	
3	8067	3686	26	28	
4	7997	3740	16	20	
5	8079	4035	27	27	
6	7963	4555	28	33	
7 MBER AVG_LOC	7909 AL_TIER_WRITE_TIME AVG	5466 _CACHING_TIER_WRITE	32 _TIME AVG_COMPACTIO	37 DN_WRITE_TIME AVG_REMOTE_	TIER_WRITE_TIME
MBER AVG_LOC	AL_TIER_WRITE_TIME AVG		_TIME AVG_COMPACTIC	DN_WRITE_TIME AVG_REMOTE_	
MBER AVG_LOCA	AL_TIER_WRITE_TIME AVG		_TIME AVG_COMPACTIC	DN_WRITE_TIME AVG_REMOTE_ 552.70	416.0
MBER AVG_LOC/ 0 1	AL_TIER_WRITE_TIME AVG 1.11 1.07		_TIME AVG_COMPACTIO 0.18 0.20	DN_WRITE_TIME AVG_REMOTE_ 552.70 437.23	416.0
MBER AVG_LOCA 0 1 2	AL_TIER_WRITE_TIME AVG 1.11 1.07 1.09		_TIME AVG_COMPACTIC 0.18 0.20 0.25	ON_WRITE_TIME AVG_REMOTE_ 552.70 437.23 315.24	416.00 213.30 290.64
MBER AVG_LOCA 0 1 2 3	AL_TIER_WRITE_TIME AVG 1.11 1.07 1.09 1.08		_TIME AVG_COMPACTIC 0.18 0.20 0.25 0.25	ON_WRITE_TIME AVG_REMOTE_ 552.70 437.23 315.24 279.53	416.00 213.30 290.64 268.90
MBER AVG_LOC/ 0 1 2 3 4	AL_TIER_WRITE_TIME AVG 1.11 1.07 1.09 1.08 1.10		_TIME AVG_COMPACTIC 0.18 0.20 0.25 0.25 0.25 0.26	ON_WRITE_TIME AVG_REMOTE_ 552.70 437.23 315.24 279.53 455.00	416.00 213.30 290.64 268.90 319.60
MBER AVG_LOCA 0 1 2 3	AL_TIER_WRITE_TIME AVG 1.11 1.07 1.09 1.08		_TIME AVG_COMPACTIC 0.18 0.20 0.25 0.25	ON_WRITE_TIME AVG_REMOTE_ 552.70 437.23 315.24 279.53	TIER_WRITE_TIME 416.00 213.30 290.64 268.90 319.60 295.22 234.72

Demo Screenshot – Query Monitoring (Cold Buffer Pool)

EMBER LOGICA	L_READS PHYSICAL_REA	DS AVG_PHYSICAL_READ	D_TIME		
 0	28417	0	0.00		
1	28816	0	0.00		
2	28622	0	0.00		
3	28697	0	0.00		
4	28639	0	0.00		
5	28584	0	0.00		
6	28685	0	0.00		
0	20005	l l l l l l l l l l l l l l l l l l l	0.00		
7	28640	0	0.00		
7	28640 G_TIER_LOGICAL_READS CACHIN	Ø G_TIER_PAGES_FOUND AVG_CAG	0.00 CHING_TIER_P_READ_TIME CACHIN		
7 MEMBER CACHIN	28640	0	0.00 CHING_TIER_P_READ_TIME CACHIN 	100.00	
7 MEMBER CACHIN	28640 IG_TIER_LOGICAL_READS CACHIN 	0 G_TIER_PAGES_FOUND_AVG_CAG 2488	0.00 CHING_TIER_P_READ_TIME CACHIN		
7 MEMBER CACHIN 0 1	28640 IG_TIER_LOGICAL_READS CACHIN 2488 2489	0 G_TIER_PAGES_FOUND AVG_CAG 2488 2489	0.00 CHING_TIER_P_READ_TIME CACHIN 0.57 0.38	100.00 100.00	
7 MEMBER CACHIN 0 1 2	28640 G_TIER_LOGICAL_READS CACHIN 2488 2489 2483	0 G_TIER_PAGES_FOUND AVG_CA0 2488 2489 2483	0.00 CHING_TIER_P_READ_TIME CACHIN 0.57 0.38 0.52	100.00 100.00 100.00	
7 MEMBER CACHIN 0 1 2 3	28640 IG_TIER_LOGICAL_READS CACHIN 2488 2489 2483 2498	0 G_TIER_PAGES_FOUND AVG_CA0 2488 2489 2483 2483 2498	0.00 CHING_TIER_P_READ_TIME CACHIN 0.57 0.38 0.52 0.42	100.00 100.00 100.00 100.00	
7 MEMBER CACHIN 0 1 2 3 4	28640 G_TIER_LOGICAL_READS CACHIN 2488 2489 2483 2498 2483 2498 2483	0 G_TIER_PAGES_FOUND AVG_CAC 2488 2489 2483 2498 2498 2483	0.00 CHING_TIER_P_READ_TIME CACHIN 0.57 0.38 0.52 0.42 0.41	100.00 100.00 100.00 100.00 100.00	

Demo Screenshot – Query Monitoring (Cold Caching Tier)

MBER LUGICA	L_READS PHYSICAL_READS				
0	28849	7	543.28		
1	28836	3	702.66		
2	28632	5	604.40		
3	28409	5	531.80		
4	28307	3	1103.00		
5	28670	4	678.00		
6	28765	5	465.60		
_					
7	28423	6	464.16		
,	28423 G_TIER_LOGICAL_READS CACHI 2485				
MBER CACHING	G_TIER_LOGICAL_READS CACHI	NG_TIER_PAGES_FOUND AVG	G_CACHING_TIER_P_READ_TI	76 99.71	L
MBER CACHING	G_TIER_LOGICAL_READS CACHI	NG_TIER_PAGES_FOUND AVG	G_CACHING_TIER_P_READ_TI	76 99.71 68 99.87	- L 7
MBER CACHING 0 1	G_TIER_LOGICAL_READS CACHI 2485 2486	NG_TIER_PAGES_FOUND AVG 2478 2483	G_CACHING_TIER_P_READ_TIN 	76 99.71 68 99.87 17 99.79	- - 7
MBER CACHING 0 1 2	G_TIER_LOGICAL_READS CACHI 2485 2486 2480	NG_TIER_PAGES_FOUND AV0 2478 2483 2475	G_CACHING_TIER_P_READ_TIN 1. 0. 1.	76 99.71 68 99.87 17 99.79 69 99.79	- 7 9
MBER CACHING 0 1 2 3	G_TIER_LOGICAL_READS CACHI 2485 2486 2480 2480 2496	NG_TIER_PAGES_FOUND AV0 2478 2483 2475 2491	G_CACHING_TIER_P_READ_TIN 1. 0. 1. 0.	76 99.71 68 99.87 17 99.79 69 99.79 99 99.87	- 7 9 9 7
MBER CACHING 0 1 2 3 4	G_TIER_LOGICAL_READS CACHI 2485 2486 2480 2496 2480 2496 2480	NG_TIER_PAGES_FOUND AV0 2478 2483 2475 2491 2477	G_CACHING_TIER_P_READ_TIN 1. 0. 1. 0. 0. 0. 0.	76 99.71 68 99.87 17 99.79 69 99.79 99 99.87 95 99.83	- 7 9 9 7 3