
IBM TechXchange

IBM Db2 LUW
Webinar Series

Db2 Cloud Object Storage Architecture
and Performance Considerations

May 7 2024

Robert Hooper
Kostas Rakopoulos

Notices and disclaimers

2

© 2024 International Business Machines Corporation.
All rights reserved.

This document is distributed “as is” without any warranty, either express or implied. In no
event shall IBM be liable for any damage arising from the use of this information, including but
not limited to, loss of data, business interruption, loss of profit or loss of opportunity.

Customer examples are presented as i l lustrations of how those customers have used IBM products
and the results they may have achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

Workshops, sessions and associated materials may have been prepared by independent session
speakers, and do not necessarily reflect the views of IBM.

Not all offerings are available in every country in which IBM operates.

Any statements regarding IBM’s future direction, intent or product plans are subject to change or
withdrawal without notice.

IBM, the IBM logo, and ibm.com are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current l ist of IBM trademarks is available on the Web at “Copyright
and trademark information” at: www.ibm.com/legal/copytrade.shtml .

Certain comments made in this presentation may be characterized as forward looking
under the Private Securities Litigation Reform Act of 1995.

Forward-looking statements are based on the company’s current assumptions
regarding future business and financial performance. Those statements by their
nature address matters that are uncertain to different degrees and involve a number
of factors that could cause actual results to differ materially. Additional information
concerning these factors is contained in the Company’s fi l ings with the SEC.

Copies are available from the SEC, from the IBM website, or from IBM Investor
Relations.

Any forward-looking statement made during this presentation speaks only as of the
date on which it is made. The company assumes no obligation to update or revise any
forward-looking statements except as required by law; these charts and the associated
remarks and comments are integrally related and are intended to be presented and
understood together.

Object Storage

Cloud Object Storage (COS)

✓ Near unlimited scalability
✓ Extreme durability + reliability
✓ High throughput

High latency (but can be compensated for) + storage
model (immutable)

3

Evolution of the Storage Architecture

Decoupled Persistent
Cloud Object Storage

High-Performance
Cloud Block Storage

@ 10-30ms latency each (6 IOPS/GB) @ 100-300ms latency per operation

4

Locally Attached NVMe Drives

Architecture Overview

NCOS TABLESPACES
• Write to object storage
• Dedicated NVMe cache
• Columnar only
• Latency mitigation

Non-NCOS TABLESPACES
• Continue existing storage model
• Db2 WAL used for both

Shared Data Management
• Continue existing model
• Buffer pools used for both

5

Pitfalls of a naïve storage model

Optimal block size for object storage is
in the range of 32-64MB

#1 Writes of random extents sized 128KB
would result in a

massive write amplification

Each write to object storage has a latency of 100-
300ms (>10X slower than block)

Files on Cloud Object
Storage

Data Pages in Db2
Warehouse Buffer Pool

#2 Writing extents sized 128KB blocks (significantly
smaller than the optimal block size range) would result

in very poor write performance
due to the per write latency

6

Background On LSM trees

7

• RocksDB is used under the hood. Log Structured Merge trees (LSM tree) is an index structure designed for
on disk low-cost indexing for data with a high insert rate.

• There are three main characteristics that make it really interesting as a storage model for Db2 Warehouse:

1. It follows an append-only write mode, where its SST files are only written once, which is ideal for cloud

object storage and to simplify cache management.

2. It is designed for self-optimization, through its background compaction process that moves data through

the fully ordered levels.

3. It is built for a high-volume ingest rate, ideal for data warehouses.

SST FileOverlapping SST Files

Non overlapping SST Files

LSM Tree based page IO

~10-15x IO reduction compared to simple
block replication

Further 3-5x IO reduction for bulk columnar
ingest (~50x total)

SST Files containing Db2
Data Pages following
LSM tree structure on
Cloud Object Storage

Data Pages in Db2
Warehouse Buffer Pool

8

Column Group Clustering within LSM tree

Clustering of data pages by column allows for more efficient
use of the cache

C2
R1

C2
R23

C2
R35

C2
R66

C2
R74

C3
R1

C3
R23

C3
R35

C3
R66

C3
R74

C1
R1

C1
R23

C1
R35

C1
R66

C1
R74

SST Files following
LSM tree structure on
Cloud Object Storage

Data Pages in Db2
Warehouse Buffer Pool

Consolidated Writes ingested to
the top of LSM tree

for Trickle Feed

Pre-clustered ingest to the
bottom of the LSM tree for Bulk

Ingest

9

Looking
Deeper
Under the
Hood

Next Gen

10

Using Native COS Tables

Step 1: Catalog Storage Access Alias

Step 2: Create Storage Group

Step 3: Create Tablespace

Step 4: Create Table

CATALOG STORAGE ACCESS ALIAS stoaccess1
VENDOR S3
SERVER https://s3host.com
USER db2inst1
PASSWORD db24ever
CONTAINER db2bucket
OBJECT default
DBUSER db2inst1

CREATE STOGROUP stogroup1
ON 'DB2REMOTE://stoaccess1'

CREATE TABLESPACE tbsp1
USING STOGROUP stogroup1

CREATE TABLE t1 (c1 INTEGER)
IN tbsp1
ORGANIZE BY COLUMN

These are DBA tasks. Developers can use NCOS
tables with no changes to their applications.

11

Demo: Setup Steps

12

Native COS Monitoring – Writes

• New types of writes
• LOCAL_TIER_WRITE

• Persistent storage (e.g., network attached block storage) write

• CACHING_TIER_WRITE
• Very fast, ephemeral storage (e.g., local NVMe) write

• REMOTE_STORAGE_TIER_WRITE
• Object storage write (excludes writes due to compaction)

• COMPACTION_WRITE
• Object storage write due to compaction

• For each write type we record time, bytes and number of requests

13

Demo: Monitoring Writes

14

LOGICAL_READS

CACHING_TIER
LOGICAL_READS

PHYSICAL_READS

LBP_PAGES_FOUND
• Bufferpool hit
• Read from memory
• Very fast

CACHING_TIER_PAGES_FOUND
• Buffer Pool miss
• Caching Tier hit
• Read from Local Disk (NVMe)
• Much slower than memory but

much faster than Object Storage

PHYSICAL_READS
• Buffer Pool miss
• Caching Tier miss
• Read from Object Storage
• Very slow

Native COS Monitoring – Reads

Metrics are collected at
various levels (e.g.,

database, tablespace,
statement). This allows
for easy drill down to

find bottlenecks.

15

Demo: Monitoring Reads

16

Native COS Performance – Key Warehouse Use Cases

• Bulk Insert
• Millions of rows per transaction
• Inserts directly into LSM tree

• Trickle Feed Insert
• Tens to Thousands of rows per transaction
• Utilizes Write Ahead Log (persistent block storage) to delay writing to COS
• Optimized for Db2 use case

• Multiple RocksDB Column Families per Table to avoid LSM L0 compaction bottleneck
• Refined RocksDB Write Buffer Manager MemTable victimization to avoid early flushes

• Queries
• Concurrent queries of varying complexity
• Utilizes Db2's prefetching to avoid synchronous reads from COS

17

 Bulk
 Insert

High Performance with COS Latency

Parallelism AsynchronousBatching Caching

• SST file
generation

• SST file uploads
to COS

• SST file generation
target size of 32
MB

• SST file
generation

• SST file upload
(before commit)

• SST file
generation

• Write through
cache

 Trickle
 Insert

• Uploads to COS • Write buffer size of
32 MB (leading to
SST files of 32 MB)

• Write buffer flushes
• Uploads to COS

(durability via WAL)

 Queries

• Reads from COS
and Caching Tier

• Compaction
• Prefetching from

COS and Caching
Tier

• Prefetching from
COS and Caching
Tier

• Reads from
Caching Tier

• Write through
cache

18

Optimizing Bulk Insert: Bulk Write Mode

Input
Data

Caching Tier

• Data written in parallel
(by CG and IR) and
async to SST files on
Caching Tier

• SST files
uploaded
in parallel
and async
to COS

• Data batched into SSTs of 32 MB
• SST files ingested into lowest

level of LSM tree, avoiding local
tier, flush logic and compaction

Object Storage

SST

SST

SST

SST

SST

SST
CG 0 CG 1 CG 2

IR 0 SST SST SST

IR 1 SST SST SST

SST file for Insert Range 1
of Column Group 2

LSM
Tree

LSM
Tree

19

NCOS Tables Outperform Previous Gen

• Big performance gains and massive storage cost savings over previous generation of Db2
Warehouse on Cloud
• 4x faster query performance
• 4.5x average query speed up (cold cache)
• 34x less expensive storage costs
• Read more here: https://www.ibm.com/blog/db2-warehouse-delivers-4x-faster-query-performance-than-

previously-while-cutting-storage-costs-by-34x/

20

IBM TechXchange

IBM Db2 LUW
Webinar Series

Continue the Conversation:

Robert Hooper (robert.christopher.hooper@ibm.com)
Kostas Rakopoulos (kostasr@ca.ibm.com)

Discussion Forum:
https://community.ibm.com/community/user/datamanagement/discussion/db2-cloud-
object-storage-architecture-and-performance-considerations-webinar

Join the Db2 Community!
https://community.ibm.com/community/user/datamanagement/home

Thank you!

Backup

22

Demo Screenshot – Trickle Insert Monitoring

MEMBER LOCAL_TIER_WRITES CACHING_TIER_WRITES COMPACTION_WRITES REMOTE_TIER_WRITES
------ -------------------- -------------------- -------------------- --------------------

 0 7836 3543 10 13
 1 8045 9193 59 50
 2 7971 3985 25 28
 3 8067 3686 26 28
 4 7997 3740 16 20
 5 8079 4035 27 27
 6 7963 4555 28 33
 7 7909 5466 32 37

MEMBER AVG_LOCAL_TIER_WRITE_TIME AVG_CACHING_TIER_WRITE_TIME AVG_COMPACTION_WRITE_TIME AVG_REMOTE_TIER_WRITE_TIME
------ ------------------------- --------------------------- ------------------------- --------------------------

 0 1.11 0.18 552.70 416.00
 1 1.07 0.20 437.23 213.36
 2 1.09 0.25 315.24 290.64
 3 1.08 0.25 279.53 268.96
 4 1.10 0.26 455.00 319.60
 5 1.08 0.19 300.29 295.25
 6 1.08 0.20 344.28 234.72
 7 1.12 0.22 367.53 224.67

23

Demo Screenshot – Query Monitoring (Cold Buffer Pool)

MEMBER LOGICAL_READS PHYSICAL_READS AVG_PHYSICAL_READ_TIME
------ -------------------- -------------------- ----------------------

 0 28417 0 0.00
 1 28816 0 0.00
 2 28622 0 0.00
 3 28697 0 0.00
 4 28639 0 0.00
 5 28584 0 0.00
 6 28685 0 0.00
 7 28640 0 0.00

MEMBER CACHING_TIER_LOGICAL_READS CACHING_TIER_PAGES_FOUND AVG_CACHING_TIER_P_READ_TIME CACHING_TIER_HITRATIO
------ -------------------------- ------------------------ ---------------------------- ---------------------

 0 2488 2488 0.57 100.00
 1 2489 2489 0.38 100.00
 2 2483 2483 0.52 100.00
 3 2498 2498 0.42 100.00
 4 2483 2483 0.41 100.00
 5 2482 2482 0.41 100.00
 6 2494 2494 0.41 100.00
 7 2491 2491 0.43 100.00

24

Demo Screenshot – Query Monitoring (Cold Caching Tier)

MEMBER LOGICAL_READS PHYSICAL_READS AVG_PHYSICAL_READ_TIME
------ -------------------- -------------------- ----------------------

 0 28849 7 543.28
 1 28836 3 702.66
 2 28632 5 604.40
 3 28409 5 531.80
 4 28307 3 1103.00
 5 28670 4 678.00
 6 28765 5 465.60
 7 28423 6 464.16

MEMBER CACHING_TIER_LOGICAL_READS CACHING_TIER_PAGES_FOUND AVG_CACHING_TIER_P_READ_TIME CACHING_TIER_HITRATIO
------ -------------------------- ------------------------ ---------------------------- ---------------------

 0 2485 2478 1.76 99.71
 1 2486 2483 0.68 99.87
 2 2480 2475 1.17 99.79
 3 2496 2491 0.69 99.79
 4 2480 2477 0.99 99.87
 5 2482 2478 0.95 99.83
 6 2491 2486 0.73 99.79
 7 2491 2485 0.77 99.75

25

