
Back to Basics – Triggers
and Advanced Triggers

• Frank Rhodes
• Db2 Administration Solution Architect BMC Software

I am presenting a presentation put together by a couple of my team members. A big
thank you to Jaspreet Kaur and Pradip Wagh.
They are both developers on one of my products, Change Manager for Db2.
They put the presentation together based upon the research they performed when
working on adding Advanced Trigger support to Change Manager.

1

Agenda

Introduction to Triggers and Event Driven Triggers

Trigger Types and Differences (Basic and Advanced Trigger)

Why Should you Care About Advanced Triggers?

Advanced Trigger Operations, Syntax and Trigger Options

Advanced Trigger Ordering and Versioning

Trigger Restrictions, Considerations and Cascading Concepts

Advanced Trigger Example

2

Introduction to Triggers

• IBM added trigger support with Db2 Version 6.

• Definition:

Triggers are event-driven specialized procedures (a piece of code) that are stored in and
managed by the RDBMS and executed in response to a data modification statement; that is, an
Insert, Update, or Delete.

• Triggers are commonly used for:

• Enforcing data integrity

• Implementing business rules

• Auditing changes

• Performing tasks that require automatic actions, based on changes to the data

• Triggers move the business rule application logic into the database, which results in faster application
development and easier maintenance. The business rule is centralized to the triggers and is no longer
repeated in several applications.

3

Each trigger is attached to a single, specified table

Once a trigger is created, it is always executed when its
"firing" event occurs. Therefore, triggers are Automatic,
Implicit, and Non-bypassable

DB2 triggers can be activated either "before“ or "after"
the SQL Event (for example, INSERT, UPDATE, and
DELETE)

Triggers can also fire other triggers. However, it's important to
design and use trigger chains carefully to avoid unintended
consequences, performance issues, and potential infinite loops

Event-Driven Triggers

4

A "before" trigger executes before activation time firing event occurs.
A “after" trigger executes after activation time firing event occurs.

Example – Suppose user is trying to delete specific data from a Table-A, and
Table-A has Trigger defined to Insert this to be deleted row into another
Housekeeping table before it gets deleted.

Types of Triggers

Triggers type can be identified based on SQLPL column value stored in
SYSIBM.SYSTRIGGERS table

Basic Trigger –

Value of SQLPL = Blank

Advanced Trigger –

Value of SQLPL = ‘Y’

In Db2 12 for z/OS with new function mode activated, IBM enhanced support for
triggers and introduced the object as an advanced trigger. IBM continues to support

existing triggers from previous releases and refers to them as basic triggers.

5

Advanced and Basic Trigger Differences

Basic Trigger Advanced Trigger

Basic triggers don’t have versions associated with them Advanced triggers can define multiple versions of the
trigger

Basic triggers support a limited set of SQL statements and
require the MODE DB2SQL clause

Advanced triggers support a larger set of SQL statements,
including SQL procedure language (SQL/PL) and must NOT
specify the MODE DB2SQL clause

Changing any trigger options requires that the trigger be
dropped and rebuilt

Changing trigger options can be achieved with an ALTER
TRIGGER statement

Basic triggers cannot be debugged Advanced triggers can be debugged

Basic triggers cannot include dynamic SQL statements Advanced triggers can include dynamic SQL statements

BIND options cannot be explicitly specified for basic
triggers

Various options including BIND options can be explicitly
specified for advanced triggers

Only REBIND option is available for basic triggers REBIND and REGENERATE options are available for
advanced triggers

6

IBM Site Referred - https://www.ibm.com/docs/en/db2-for-
zos/12?topic=concepts-triggers#db2z_triggers__sect-
basicadv

BIND Options like – ASUTIME, EXPLAIN, BUSINESS, SYSTEM AND ARCHIVE TIME
SENSITIVE, ISOLATION LEVEL, etc.
Other Options like – APPLCOMPAT, DATE & TIME FORMAT, DEBUG MODE, etc.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=concepts-triggers#db2z_triggers__sect-basicadv
https://www.ibm.com/docs/en/db2-for-zos/12?topic=concepts-triggers#db2z_triggers__sect-basicadv
https://www.ibm.com/docs/en/db2-for-zos/12?topic=concepts-triggers#db2z_triggers__sect-basicadv

Why Should you Care About Advanced
Triggers? (1|2)

Advanced triggers are like native
SQL stored procedures. Both

consist of procedural logic that is
stored at the database

level. However, native SQL stored
procedures are not event driven.

Native SQL stored procedures are
explicitly executed by invoking a CALL to

the procedure (instead of implicitly
being executed like triggers).

7

Why Should you Care About Advanced
Triggers? (2|2)
Prior to Db2 version 12, basic triggers supported a
limited set of SQL statements because the trigger text
had to call a stored procedure to provide this
additional capability. As a result, it took increased time
to develop and deploy applications.

Calling a stored procedure in the code can be
inefficient. This increases the cost of using Db2 for
z/OS, degrades the application performance for CPU
and elapsed time, and increases the maintenance cost
to manage more objects and corresponding code.

With advanced triggers, users can directly use SQL/PL
statements in the text instead of calling native SQL
stored procedures.

EXAMPLE

CREATE TRIGGER EMPSALRY

AFTER UPDATE ON EMPTABLE1

REFERENCING NEW TABLE AS NEWEMP

FOR EACH STATEMENT MODE DB2SQL

BEGIN ATOMIC

 CALL CHECKSAL(TABLE NEWEMP);

END

8

Operations on Advanced Triggers

Db2
Advanced Triggers

ALTER TRIGGER and REPLACE VERSION
ALTER TRIGGER ADD VERSION

ALTER TRIGGER ACTIVATE VERSION

CREATE TRIGGER
CREATE OR REPLACE TRIGGER

ALTER TRIGGER DROP VERSION
DROP TRIGGER

9

CREATE (OR REPLACE) TRIGGER Syntax

The authorization set that is
defined for CREATE TRIGGER
must include at least one of
the following:

• The CREATEIN privilege on
the Schema

• SYSADM or SYSCTRL
Authority

• System DBADM

Authorizations

IBM Site Referred – https://www.ibm.com/docs/en/db2-for-zos/12?topic=statements-create-trigger-advanced 10

Trigger Activation Time – BEFORE, AFTER and INSTEAD OF
Trigger Event – INSERT, UPDATE (of Column Name) and DELETE
Trigger Granularity – FOR EACH ROW, FOR EACH STATEMENT (Multiple
Rows)
Trigger Actions – WHEN (search-condition)

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statements-create-trigger-advanced

Example of Advanced Trigger - CREATE

CREATE TRIGGER

EXAMPLE

CREATE TRIGGER MYTRIGEXAMPLE01

VERSION V1

BEFORE INSERT ON MYTABLE1

REFERENCING NEW AS N1

FOR EACH ROW

ALLOW DEBUG MODE

QUALIFIER MVSPXW

WHEN(N1.TIMECOL IS NULL OR N1.TIMECOL > '21:00’)

LBL1: BEGIN ATOMIC

IF (N1.TIMECOL IS NULL) THEN

 SET N1.TIMECOL = N1.TIMECOL + 1 HOUR;

END IF;

IF (N1.TIMECOL > '21:00') THEN

 SIGNAL SQLSTATE '80000'

 SET MESSAGE_TEXT = 'Class ending time is beyond 9 pm';

END IF;

END LBL1

11

Example of Advanced Trigger -
OR REPLACE

CREATE
OR REPLACE

TRIGGER

EXAMPLE

CREATE OR REPLACE TRIGGER MYTRIGEXAMPLE01

VERSION V1

BEFORE INSERT ON MYTABLE1

REFERENCING NEW AS N1

FOR EACH ROW

ALLOW DEBUG MODE

QUALIFIER MVSPXW

WHEN(N1.TIMECOL IS NULL OR N1.TIMECOL > '21:00’)

LBL1: BEGIN ATOMIC

IF (N1.TIMECOL IS NULL) THEN

 SET N1.TIMECOL = N1.TIMECOL + 1 HOUR;

END IF;

IF (N1.TIMECOL > '21:00') THEN

 SIGNAL SQLSTATE '80000'

 SET MESSAGE_TEXT = 'Class ending time is beyond 9 pm';

END IF;

END LBL1

12

Implicit Creation of Version “V1”

If the VERSION keyword is not
specified, and the trigger does not

exist

The trigger is created with the initial
version (V1)

If the VERSION keyword is not
specified, and the trigger exists

Version V1 does not exist Db2 creates the trigger as version V1

Version V1 already exists

For CREATE, Db2 will issue an error
since it will try to assign implicit

Version ID as “V1”

For CREATE OR REPLACE, Db2 will
replace the existing version V1

without issuing an error

13

ALTER TRIGGER Syntax

The authorization set that is
defined for ALTER TRIGGER
must include at least one of the
following:

• Ownership of the Trigger

• The ALTERIN privilege on
the Schema

• SYSADM authority

• SYSCTRL authority

• System DBADM
Authorizations

IBM Site Referred – https://www.ibm.com/docs/en/db2-for-zos/12?topic=statements-alter-trigger-advanced 14

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statements-alter-trigger-advanced

Examples of Advanced Trigger – ALTER (1|4)

ALTER TRIGGER VERSION
<Ver ID>

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

VERSION V2

ASUTIME LIMIT 20000 ;

ALTER TRIGGER ACTIVE
VERSION

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

ACTIVE VERSION

DATE FORMAT ISO

TIME FORMAT ISO ;

ALTER TRIGGER
(without specifying Version ID

and ACTIVE VERSION)

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

DATE FORMAT ISO

TIME FORMAT ISO ;

15

Examples of Advanced Trigger – ALTER (2|4)

ALTER TRIGGER ADD
VERSION <Ver ID>

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_02

ADD VERSION TWO

AFTER UPDATE OF QUOTE ON DBPXW05.CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE FOR EACH ROW

BEGIN ATOMIC

 INSERT INTO DBPXW05.QUOTEHISTORY VALUES

 ('TWO',NEWQUOTE.QUOTE,CURRENT TIMESTAMP) ;

END ;

16

Examples of Advanced Trigger – ALTER (3|4)

ALTER TRIGGER
REPLACE VERSION

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

REPLACE VERSION V1

AFTER UPDATE OF QUOTE ON DBPXW05.CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE FOR EACH ROW

ASUTIME LIMIT 2

BEGIN ATOMIC

 INSERT INTO DBPXW21.QUOTEHISTORY VALUES

 ('TWO’,NEWQUOTE.QUOTE,CURRENT TIMESTAMP);

END;

ALTER TRIGGER
REPLACE ACTIVE

VERSION

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

REPLACE ACTIVE VERSION

AFTER UPDATE OF QUOTE ON DBPXW05.CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE FOR EACH ROW

ASUTIME LIMIT 2

BEGIN ATOMIC

 INSERT INTO DBPXW21.QUOTEHISTORY VALUES

 ('TWO’,NEWQUOTE.QUOTE,CURRENT TIMESTAMP);

END;

17

IBM Site Referred –
https://www.ibm.com/docs/en/db2-for-
zos/12?topic=concepts-triggers#db2z_triggers__sect-
basicadv

ALTER –
• Specifies that the trigger is to be changed. When you change one or more trigger

options, any option that is not explicitly specified uses the existing value from the
trigger that is being changed.

REPLACE –
• Specifies that a version of the trigger is to be replaced. When you replace a trigger,

the signature of the trigger has to be maintained.
• For options that are not explicitly specified, the system default values for those

options are used, even if those options were explicitly specified for the version of
the trigger that is being replaced.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=concepts-triggers#db2z_triggers__sect-basicadv
https://www.ibm.com/docs/en/db2-for-zos/12?topic=concepts-triggers#db2z_triggers__sect-basicadv
https://www.ibm.com/docs/en/db2-for-zos/12?topic=concepts-triggers#db2z_triggers__sect-basicadv

• Relace can not be used for the version of the trigger that is specified DISABLE
DEBUG MODE. If DISABLE DEBUG MODE is specified for a version of a trigger, the
option cannot be changed using the REPLACE clause.

• When a trigger definition is replaced, any existing comments in the catalog for that
definition of the trigger are removed.

• Binding the replaced version of the trigger might result in a new access path even
if the trigger body is not changed.

17

Examples of Advanced Trigger – ALTER (4|4)

ALTER TRIGGER ACTIVATE
VERSION <Ver ID>

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

ACTIVATE VERSION V2 ;

ALTER TRIGGER
REGENERATE VERSION

<Ver ID>

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_02

REGENERATE VERSION VERSIONID_01 ;

ALTER TRIGGER
REGENERATE ACTIVE

VERSION

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_02

REGENERATE ACTIVE VERSION ;

18

A L L V E R S I O N S M U S T H AV E T H E

Signature of an Advanced Trigger

The signature of an advanced trigger comprises the seven properties shown in the following
diagram. You must maintain the signature of an advanced trigger when you perform one of
the following changes:

• Adding a new version
• Replacing an existing option
• Altering an existing option

SAME
ACTIVATION
TIME

1

SAME EVENT

2

SAME
GRANULARITY

3

SAME NAME

4

SAME SCHEMA

5

SAME TABLE
CREATOR

6

SAME TABLE
NAME

7

19

CREATE TRIGGER MYTRIGEXAMPLE01

VERSION V1

BEFORE INSERT ON MYTABLE1

ALTER TRIGGER MYTRIGEXAMPLE01

ADD VERSION V2

AFTER INSERT ON MYTABLE1

Error Details –
DSNT408I SQLCODE = -4728, ERROR: ANOTHER VERSION OF OBJECT
DBPXW05.TR_NEW01
 EXISTS AND IS DEFINED WITH AN INCOMPATIBLE OPTION. THE OPTION
 IS TRIGGER EVENT

DROP TRIGGER Syntax

The authorization set that is defined
for DROP TRIGGER must include at
least one of the following:

• The DROP privilege on the
database

• DBADM or DBCTRL authority for
the database

• SYSADM or SYSCTRL authority

Authorizations

IBM Site Referred – https://www.ibm.com/docs/en/db2-for-zos/12?topic=statements-drop 20

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statements-drop

Examples of Advanced Triggers - DROP

ALTER TRIGGER DROP
VERSION <Ver ID>

EXAMPLE

ALTER TRIGGER DBPXW05.MYTRIGGER_01

DROP VERSION V1 ;

DROP TRIGGER
EXAMPLE

DROP TRIGGER DBPXW05.MYTRIGGER_02 ;

21

You can't drop the ACTIVE version; in that case you will need to activate the other
existing version and then continue dropping with the current ACTIVE version.

Advanced Trigger – REBIND or
REGENERATE

The REGENERATE keyword is available only for advanced triggers, whereas the
REBIND command is for basic and advanced triggers.

The REBIND command
rebinds only the non-SQL-

control statements. It helps
to retain Original values

during drop and rebuilds.

The REGENERATE keyword,
rebinds both SQL Control

statements and non-SQL-control
Statements.

22

Basic Trigger Detail

23

Advanced Trigger Detail

24

As far as parameters are concerned the only real addition for Advanced Triggers is the
Version of the trigger

Transition Variables and
Correlation Names
• A transition variable is a variable that references a value in the SQL

for a triggered action. This variable is in the form of R.C
(ROW.COLUMN).

• A correlation name is the row name in the transition variable.
• Two specialized aliases are available only inside of triggers (NEW and

OLD).
• Each trigger can have one NEW view of the table and one OLD view

of the table, to which the trigger is attached.
• When an INSERT occurs, the NEW table contains the rows that

were just inserted into the table
• When a DELETE occurs, the OLD table contains the rows that

were just deleted from the table
• After an UPDATE, the NEW table contains the new values for

the rows that were just updated in the table; the OLD table
contains the old values for the updated rows. An UPDATE
statement logically functions as a DELETE followed by an
INSERT.

EXAMPLE

CREATE TRIGGER raise_limit

AFTER UPDATE OF salary ON employee

REFERENCING OLD AS oldrow

NEW AS newrow

FOR EACH ROW MODE DB2SQL

WHEN(newrow.salary > 1.1 *

oldrow.salary)

 SIGNAL SQLSTATE '75000' ('Salary

increase > 10%’);

Site Referred – https://www.columbia.edu/sec/acis/db2/db2help/db2h2961.htm 25

Example:
You want a triggered action to invoke an error message if a dollar amount in the
SALARY column of table EMPLOYEE is updated to a figure that's over 110% of the
amount. The action needs to reference two values: the original dollar amount and the
figure to which it will be updated.
As you can see, we have defined the REFERENCING clause with OLD and NEW. We
will give the OLD reference a correlation ID of oldrow, and the NEW reference has a
correlation ID of newrow.
Please note that these correlation IDs are only valid for this trigger.
To reference the first value, you can specify a variable called OLDROW.SALARY, where
OLDROW refers to the row that contains the value. To reference the second value,
you can specify a variable called NEWROW.SALARY, where NEWROW refers to the row
that contains the value.

INSERTS have NEW variables available to it
DELETE has the OLD variables available
UPDATE has both. The values before and after the update occurred

https://www.columbia.edu/sec/acis/db2/db2help/db2h2961.htm

Basic Trigger Options

26

Advanced Trigger Options (1|4)

27

Advanced Trigger Options (2|4)

28

WITH EXPLAIN or WITHOUT EXPLAIN –
Specifies whether information will be provided about how SQL statements in the
trigger will execute.

DATE FORMAT - ISO, EUR, USA, JIS, or LOCAL
ISO - International Standards Organization
USA - IBM® USA standard
EUR - IBM European standard
JIS - Japanese industrial standard Christian era
LOCAL - Installation-defined

https://www.ibm.com/docs/en/db2-for-
zos/13?topic=values-string-representations-datetime

ISOLATION LEVEL –
RR (Specifies repeatable read.)
RS (Specifies read stability.)
CS (Specifies cursor stability.) - CS is the default
UR (Specifies uncommitted read)

https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime
https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime

CONCURRENT ACCESS RESOLUTION –
Specifies whether processing uses only committed data or whether it will wait for
commit or rollback of data that is in the process of being updated.

IBM Site Reference for all options –
https://www.ibm.com/docs/en/db2-for-zos/13?topic=statements-create-trigger-
advanced

28

Advanced Trigger Options (3|4)

29

TIME FORMAT ISO, EUR, USA, JIS, or LOCAL –

https://www.ibm.com/docs/en/db2-for-
zos/13?topic=values-string-representations-datetime

FOR UPDATE CLAUSE OPTIONAL or FOR UPDATE CLAUSE REQUIRED (Default) –
Specifies whether the FOR UPDATE clause is required for a DECLARE CURSOR
statement if the cursor is to be used to perform positioned updates.

ASUTIME –
Specifies the total amount of processor time, in CPU service units, that a single
invocation of this version of the trigger can run. When you are debugging a trigger,
setting a limit can be helpful in case the trigger gets caught in a loop.

RELEASE AT (DEALLOCATE / COMMIT) – COMMIT is the default.
Specifies when to release resources that the trigger uses: either at each commit point
or when the trigger terminates.

https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime
https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime

Advanced Trigger Options (4|4)

30

BUSINESS_TIME SENSITIVE – YES (Default) or NO
Determines whether references to application-period temporal tables in both static
and dynamic SQL statements are affected by the value of the CURRENT TEMPORAL
BUSINESS_TIME special register.

SYSTEM_TIME SENSITIVE – YES (Default) or NO
Determines whether references to system-period temporal tables in both static and
dynamic SQL statements are affected by the value of the CURRENT TEMPORAL
SYSTEM_TIME special register.

APPLCOMPAT applcompat-level – The default value is V12R1M500.
Specifies the application compatibility level behavior for static SQL statements in the
trigger body.

Trigger Order and Versioning

You can have multiple triggers and trigger versions
on the same table. Db2 records the timestamp, and
the triggers and trigger versions are activated in the

order in which they were created.

If the trigger is being dropped due to any alters to the
trigger options, you need to ensure that the order of the
versions is maintained. The order based on the creation

timestamp can impact the firing order sequence.

31

Multiple triggers:
Multiple triggers that have the same activation time and triggering event can be
defined on a table. The triggers are activated in the order in which they were created.
For example, the trigger that was created first is executed first; the trigger that was
created second is executed second. If the OR REPLACE option is used to replace an
existing trigger, the create time is changed and therefore might affect the order of
trigger execution.

IBM Site Reference – https://www.ibm.com/docs/en/db2-for-
zos/13?topic=values-string-representations-datetime

https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime
https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime

Trigger Cascading

Db2 limits this
cascading effect to 16

levels to prevent
endless looping. If more

than 16 levels of
nesting occur, the

transaction is aborted

Trigger cascading is the
result of the activation

of one trigger that
executes SQL

statements that cause
the activation of other

triggers or even the
same trigger again.

Image shows best
cascading example of

triggers which can lead
to potential looping

problems.

32

IBM Site Referred – https://www.ibm.com/docs/en/db2-for-
zos/13?topic=values-string-representations-datetime

If a trigger at the 17th level is activated, Db2 returns SQLCODE -724 and
backs out all SQL changes in the 16 levels of cascading. However, as with any
other SQL error that occurs during trigger execution, if any action occurs that
is outside the control of Db2, that action is not backed out.

https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime
https://www.ibm.com/docs/en/db2-for-zos/13?topic=values-string-representations-datetime

Trigger Restrictions

You cannot create a basic or an advanced trigger on MQT, clone, temporary, auxiliary,
accelerator only, and directory tables. In addition, you cannot create triggers on aliases,
synonyms, or real-time statistics.

You cannot create triggers on views that have LOB, XML, ROWID, identity, security label, row
change timestamp, row begin, row end, and transaction start ID columns.

You can nest up to 16 levels of triggers.

33

Trigger Considerations

Performance Impact:

Triggers can introduce performance overhead,
especially if they involve complex logic, queries,
or updates. Careful design and testing are
required to ensure that triggers do not
significantly impact database performance.

Transaction Control:

Triggers operate within the context of the
transaction that caused them to fire. Changes
made by triggers are part of the same
transaction and are committed or rolled back
together with the main transaction.

Privileges:

Triggers execute with the privileges of the user
who defined the trigger, not the privileges of
the user who triggered the action. This can
affect the data that the trigger can access.

Isolation Levels:

Be mindful of the isolation level of transactions
that use triggers. Triggers can influence the
locking behavior and concurrency control of
the database.

Table Alterations:

Some alterations to a table, such as adding or
dropping columns, can impact triggers. Dropping a
column referenced in a trigger will cause the trigger
to be invalidated. Adding columns might require
modifying triggers to account for the new columns
– trigger is based upon or references.

34

Advanced Trigger – an Example

• SQL/PL statements set values to variables
and show
✓DECLARE statements

✓Loops

✓Cursors

✓INSERT INTO

35

References -

• https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-advanced-trigger-support

• https://robertsdb2blog.blogspot.com/2017/08/db2-12-for-zos-sql-enhancements.html –
Robert Catterall

• https://www.craigsmullins.com/triggers.htm - Craig S. Mullins

• https://db2portal.blogspot.com/2017/02/the-db2-12-for-zos-blog-series-part-2.html -
Craig S. Mullins

36

https://www.ibm.com/docs/en/db2-for-zos/12?topic=release-advanced-trigger-support
https://robertsdb2blog.blogspot.com/2017/08/db2-12-for-zos-sql-enhancements.html
https://www.craigsmullins.com/triggers.htm

Thank you

If you have any queries, feel free to contact me at –

frank_Rhodes@bmc.com

Speaker Biography

Frank Rhodes

Solution Architect, DB2 Administration Products

Frank Rhodes started with BMC Software in 1995. In his current role

he works to promote cross product coordination between the Database

Administration products and the other BMC DB2 products. The

products that he has primary responsibility for are ALTER for DB2,

Change Manager for DB2, Catalog Manager for DB2, DASD Manager

Plus for DB2, Command Center for DB2 as well as BMC AMI DevOps

for Db2.

Frank was a Developer on the Change Manager for DB2 product for

over 10 years. His main areas of responsibilities being the

development and maintenance for the Analysis Engine as well as the
product’s user interface. Prior to joining the Change Manager Product

37

team, he worked on the TIS Install for the Administrative products. He

was the lead developer in charge of the initial implementation of a

common install for all the DB2 products.

Prior to BMC, Frank worked as a Systems Programmer for IBM in

support of NASA JSC’s administrative processors. He supported

installation and maintenance of MVS products and oversaw

implementing Automated Operation for IBM’s internal systems as well

as NASA’s systems.

Frank holds a Bachelor’s Degree in Computer Science from the Texas A
& M University.

Jaspreet Kaur – Jaspreet holds 18+ years of IT experience and was an Application
Programmer in Mainframes and DB2. She was an Associate Project Manager in Pune,
Maharashtra, before joining BMC. For the last 3 years, Jaspreet has been working
with BMC Pune office, as Senior Product Developer on DB2 Change Manager product.

Pradip Wagh - Pradip holds 14+ years of IT experience, and he played various roles
like a Lead Application Programmer, Business and System Analyst in Mainframes and
DB2. He was Lead Developer in Pune, Maharashtra, before joining BMC. For the last
2.5 years, Pradip has been working with BMC Pune office as Senior Product
Developer on DB2 Change Manager product.

37

	Slide 1: Back to Basics – Triggers and Advanced Triggers
	Slide 2: Agenda
	Slide 3: Introduction to Triggers
	Slide 4: Event-Driven Triggers
	Slide 5: Types of Triggers
	Slide 6: Advanced and Basic Trigger Differences
	Slide 7: Why Should you Care About Advanced Triggers? (1|2)
	Slide 8: Why Should you Care About Advanced Triggers? (2|2)
	Slide 9: Operations on Advanced Triggers
	Slide 10: CREATE (OR REPLACE) TRIGGER Syntax
	Slide 11: Example of Advanced Trigger - CREATE
	Slide 12: Example of Advanced Trigger - OR REPLACE
	Slide 13: Implicit Creation of Version “V1”
	Slide 14: ALTER TRIGGER Syntax
	Slide 15: Examples of Advanced Trigger – ALTER (1|4)
	Slide 16: Examples of Advanced Trigger – ALTER (2|4)
	Slide 17: Examples of Advanced Trigger – ALTER (3|4)
	Slide 18: Examples of Advanced Trigger – ALTER (4|4)
	Slide 19: Signature of an Advanced Trigger
	Slide 20: DROP TRIGGER Syntax
	Slide 21: Examples of Advanced Triggers - DROP
	Slide 22: Advanced Trigger – REBIND or REGENERATE
	Slide 23: Basic Trigger Detail
	Slide 24: Advanced Trigger Detail
	Slide 25: Transition Variables and Correlation Names
	Slide 26: Basic Trigger Options
	Slide 27: Advanced Trigger Options (1|4)
	Slide 28: Advanced Trigger Options (2|4)
	Slide 29: Advanced Trigger Options (3|4)
	Slide 30: Advanced Trigger Options (4|4)
	Slide 31: Trigger Order and Versioning
	Slide 32: Trigger Cascading
	Slide 33: Trigger Restrictions
	Slide 34: Trigger Considerations
	Slide 35: Advanced Trigger – an Example
	Slide 36: References -
	Slide 37

