
Philadelphia

Who’s afraid of DDF

Toine Michielse, Broadcom

Session Code: A16

Agenda

• Introduction

• Identification

• Application topics

• Taking control

• Questions

Let me quickly introduce myself

• Toine Michielse, born in The Netherlands
• DB2 programmer, DBA, System Engineer, Architect

• Worked for many years for IBM as Db2 for z/OS Lab
Advocate

• Came to Madrid from Switzerland
• Busy learning Spanish (and padel)

• My passions:
• Db2, data, mainframe modernization
• Paragliding
• Playing drums with “Ciencia Urbana”

“Traditional” application connect architecture

xxxxMSTR

xxxxDBM1

xxxxIRLM

SP Addr. SpxxxxDIST

CICS

IMS

BATCH

TSO

Attach
code

Prog 1

Pkg 1 Plan X

“Traditional” application connect architecture

xxxxMSTR

xxxxDBM1

xxxxIRLM

SP Addr. SpxxxxDIST

CICS

IMS

BATCH

TSO

Attach
code

Prog 1

Pkg 1

yyyyMSTR

yyyyDBM1

yyyyIRLM

SP Addr. Sp

yyyyDIST

DISTSERVPkg 1

Plan X

“A brave, (but not so) new world…”

xxxxMSTR

xxxxDBM1

xxxxIRLM

SP Addr. SpxxxxDIST

Pkg ??

JDBC
Type 4Java

DISTSERV

ODBC

Fortran

..etc…

C/C++/C#
Visual
Basic

Python

Yep, it’s them funny
SYSS…. and SYSL….

packages

Tell us who you are!!!

An error occurred…

Something went wrong…

Tell us who you are!!!

• Without proper identification, solving performance or capacity
problems becomes a nightmare

• The reason DISTSERV and generic packages

Naming Convention for CLI packages:

SYSSxyy and SYSLxyy

'S' represents a small package, and 'L' represents a large package

'H' represents WITH HOLD, and 'N' represents NOT WITH HOLD

'x' is the isolation level: 0=NC, 1=UR, 2=CS, 3=RS, 4=RR

'yy' is the package iteration 00 through FF

• Enable profiling in DB2 for z/OS

– Set limits for specific applications, avoid single application monopolizing resources

– Capacity management and protection

• Enable workload protection using WLM classification

– Protect your bread-and-butter applications from being impacted by adhoc SQL

– Avoid having to add capacity with associated monetary impact

• Enable different level of monitoring, dash boarding and capacity insights

– IMMEDIATE identification of program causing an issue in Detector/Apptune/Query
Monitor for instance

• Enable proper charge back

– Properties end up in SMF records / MICS

Benefits of proper identification

Positioning applications in a distributed world

Business
App 1

Business
App 2

Business
App 3

Business
App 1

Business
App 3

…

Invoking location 1 Invoking location X

Business App 1

Program A

Program B

Program Y

…
tab1

tab2

tabx

CLIENT_WRKSTNNAME

CLIENT_USERID CLIENT_APPLNAME

Identifying SQL initiated off-Mainframe
Java .NET / .CFG WLM Profile Special register CLI/ODBC DB2 SP

setable

ClientAccountingInformation ClientAccountingString CAI N CLIENT_ACCTNG QWDASUFX Y

ClientProgramName <none> CI N QWHCCV N

ClientCorrelationToken ClientCorrelationToken <none> N CLIENT_CORR_TOKEN N

ClientUser ClientUserID CUI Y CLIENT_USERID QWHCEUID_Var Y

ClientHostName ClientWorkStationName CWN Y CLIENT_WRKSTNNAME QWHCEUWN_var Y

ApplicationName ClientApplicationName CTN Y CLIENT_APPLNAME QWHCEUTX_Var Y

ApplicationInformation ClientApplicationName PC Y CLIENT_APPLNAME QWHCEUTX Y

• Call the java.sql.Connection.setClientInfo / java.sql.Connection.getClientInfo method

– i.e. conn.setClientInfo(“ApplicationName", “MyProg”)

• Use the .NET get or set methods from Db2Connection Class: public function set ClientApplicationInformation(String)

• CLI/ODBC applications use SQLSetConnectAttr() function

• As a last resort: use SQL: SQL CALL WLM_SET_CLIENT_INFO stored procedure (part of Db2 for z/OS)

• Websphere DataSourceDefinition

– ClientApplicationInformation
– In Data Source extended property or Resource Reference of the given application

• DB2JccConfiguration.properties

– ClientApplicationName

• Db2cli.ini

– ClientApplName

• Db2dsdriver.cfg

– ClientApplName

What if it is too late…..

Performance considerations

• Managing connections and DBATs
• Avoid delays due to resource shortage

• Avoid overwhelming the system by over configuration and roque applications

• SQL / Data now needs to be transmitted over a network protocol
• Minimize message exchange

• More opportunities for SQL binds
• Access path changes impose a risk to performance stability

DIST

How about those connections and threads?

DBM1

pooled active

inactive active

• CMSTAT INACTIVE
• Allow DBAT disassociated

from connection

• At commit (*)
• Active thread to pool

• POOLINAC drives cleanup

• Active connection, inactive

• RELEASE(DEALLOCATE)
• DBAT remains associated

with connection
(HiperDBAT)

• Beware of “unhealthy”
application behavior with
RELEASE(DEALLOCATE)

• Allow processes to break in:
• MODIFY DDF PKGREL

Thread control….

• Active DBAT vs connection
• Avoid queuing for a DBAT

• Promote thread pooling

• CONDBAT, MAXDBAT, POOLINAC

• Consider using profiling for more granular control
• MONITOR (ALL) CONNECTIONS

• MONITOR (ALL) THREADS

DSNL080I !XXXX DSNLTDDF DISPLAY DDF REPORT FOLLOWS:

DSNL081I STATUS=STARTD

DSNL082I LOCATION LUNAME GENERICLU

DSNL083I XXXXXXXX -NONE -NONE

DSNL084I TCPPORT=XXXXX SECPORT=0 RESPORT=XXXXX IPNAME=XXXXXXXX

DSNL085I IPADDR=::XX.XXX.XX.XX

DSNL086I SQL DOMAIN=your.domain.name

DSNL090I DT=I CONDBAT= 600 MDBAT= 600

DSNL092I ADBAT= 1 QUEDBAT= 0 INADBAT= 0 CONQUED= 0

DSNL093I DSCDBAT= 1 INACONN= 5 IUDBAT= 0 PQDBAT= 0

DSNL105I CURRENT DDF OPTIONS ARE:

DSNL106I PKGREL = COMMIT

DSNL106I SESSIDLE = 001440

DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

Profile tables

• Objects created in DSNTIJSG

• Use to monitor and/or control connections and threads
• More granular ZPARM settings or special register settings

• DSN_PROFILE_TABLE defines the scope of a given profile
• AUTHID

• IP Address (es), (also location or location alias)

• Various other attributes

• DSN_PROFILE_ATTRIBUTES defines what needs to be done for a
match on a given profile
• Relevant categories: REMOTE CONNECTIONS, REMOTE THREADS

Profile tables: activation

• Profiles with PROFILE_ENABLED = ‘Y’ are activated through
• -START PROFILE command

• Local to each member

• After start profile, must verify:
• STATUS column in SYSIBM.DSN_PROFILE_HISTORY /

ATTRIBUTES_HISTORY
• ‘ACCEPTED’ or ‘REJECTED’

Profile tables: sample 1

PROFILEID LOCATION PROFILE_ENABLED CLIENT_APPLNAME … …

1 Y APP1

2 appsrv2.bc.com Y

3 Y APP3

PROFILE
ID

KEYWORDS ATTRIBUTE1 ATTRIBUTE2

1 MONITOR THREADS WARNING 50

2 MONITOR CONNECTIONS EXCEPTION 10

3 MONITOR IDLE THREADS EXCEPTION 20

3 MONITOR THREADS WARNING 50

DSN_PROFILE

DSN_PROFILE_ATTRIBUTES

Profile tables: sample 2

PROFILEID LOCATION PROFILE_ENABLED CLIENT_APPLNAME … …

1 appsrv1.bc.com Y

2 ::0 Y

PROFILE
ID

KEYWORDS ATTRIBUTE1 ATTRIBUTE2

1 MONITOR CONNECTIONS EXCEPTION 50

2 MONITOR CONNECTIONS EXCEPTION 5

2 MONITOR ALL CONNECTIONS EXCEPTION 500

DSN_PROFILE

DSN_PROFILE_ATTRIBUTES

• Use parameter markers instead of values in the SQL statement text
– Improve dynamic cache residency / hitratio dramatically
– Exceptions maybe parameter markers for columns with extreme skew

• Always consider block fetch for read SQL
– Save network message exchanges
– Need to look at isolation level

• Minimize impact on other applications
– Healthy SQL, healthy locking behavior
– Isolation level. Warning: understand difference in Java isolation level and DB2 for

z/OS isolation level

SQL best practices distributed access

Where to code the SQL
• Major benefit of SP is avoiding network traffic

• At cost of more complex architecture

• Still uses DDF to invoke the SP code

• Package ?? can be a generic package like
SYSxxyyy

• Of interest is finding A, the source that
ships the SQL

• Side benefit, you now have an identification
for PART of the application

• Only identify SQL wrapped in package X

• The usage of SP X in Program A may be
part of the problem though

• Identification can be achieved by other
means

• This doesn’t necessarily help in identifying
‘business application’ or even caller

Program A

SELECT

UPDATE

INSERT

Program A

CALL X

Package ??

SELECT

UPDATE

INSERT

Package X

SELECT

UPDATE

INSERT

Package ??

CALL X

????

???? ????

????
Network

stack
(includes

DDF)

Network
stack

(includes
DDF)

• Dynamic Statement Cache

– Static SQL behavior under conditions

– Keep an eye on relevant statistics

• Pay attention to local and global statement cache.

–Monitor regularly for “cache thrashers”

• Consider usage of “concentrate literals”

– But beware of the downside (skewed data)

So now it’s all dynamic…. Or is it???

• Dynamic access path stabilisation

• Can be snapshot or continuous monitoring

• Statements can be invalidated

– i.e. by DROPs

• When matching SQL text is not found in DSC,

– Structure are loaded from catalog, avoiding full prepare

• Statements can be removed

– FREE

So now it’s all dynamic…. Or is it???

Catalog
tables

DSC

• Optimize message exchanges

– Application level (multi-row processing)

• Enable block fetch

– Read only cursors
– FOR FETCH ONLY

– ISOLATION and CURRENT DATA option

– OPTIMIZE FOR x ROWS

• Block fetch types:

– Limited
– Single stream, synchronous processing

– Continuous
– Multiple query blocks on each message exchange

SQL best practices for distributed access

• Ensure to disable auto commit in JDBC (perhaps also other protocols)
– In Java the default is auto commit yes.

• Use the JDBC and ODBC batching interface

SQL best practices for distributed access

SQLCHAR *BatchStmt =

 "INSERT INTO Orders (OrderID, CustID, OpenDate, SalesPerson, Status)"

 "VALUES (2002, 1001, {fn CURDATE()}, 'Garcia', 'OPEN');"

 "INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 1, 1234, 10);"

 "INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 2, 987, 8);"

 "INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 3, 566, 17);"

 "INSERT INTO Lines (OrderID, Line, PartID, Quantity) VALUES (2002, 4, 412, 500)";

SQLExecDirect(hstmt, BatchStmt, SQL_NTS);

• When DDF is involved, you have zIIP eligible workload. Use to your advantage

• Blocked workload support is not enabled for zIIP specialty engines

• The zIIP "needs help" function (IIPHONORPRIORITY = YES) can get delayed in a zIIP-
constrained environment.

• Work classified as Discretionary to WLM does not benefit from the zIIP “needs help”
function.

• JDBC Type 2 versus Type 4 driver

– zIIP offload may come at a high cost……

zIIP offload

Consider using dashboards like this…

???
Questions….

29 Copyright © 2023 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom, Inc. and/or its subsidiaries.29

Broadcom Mainframe Technical Exchanges

Make plans to attend

• Network with peers and Mainframe technical

experts

• Technical education, product update, how-to

and roundtable sessions

• No registration fee! Open to all Broadcom

customers

• Learn more: https://bit.ly/MainframeTechEx

• North American in-person event in Plano, TX: June 13-15

• Global virtual event: October 3-5

In-person events are back!

https://bit.ly/MainframeTechEx

Thank You

Speaker: Toine Michielse

Company: Broadcom

Email Address: toine.michielse@broadcom.com

Session Code: A16

Please fill out your session evaluation before leaving!

	Slide 1
	Slide 2: Agenda
	Slide 3: Let me quickly introduce myself
	Slide 4: “Traditional” application connect architecture
	Slide 5: “Traditional” application connect architecture
	Slide 6: “A brave, (but not so) new world…”
	Slide 7: Tell us who you are!!!
	Slide 8: Tell us who you are!!!
	Slide 9: Benefits of proper identification
	Slide 10: Positioning applications in a distributed world
	Slide 11: Identifying SQL initiated off-Mainframe
	Slide 12: What if it is too late…..
	Slide 13: Performance considerations
	Slide 14: How about those connections and threads?
	Slide 15: Thread control….
	Slide 16: Profile tables
	Slide 17: Profile tables: activation
	Slide 18: Profile tables: sample 1
	Slide 19: Profile tables: sample 2
	Slide 20: SQL best practices distributed access
	Slide 21: Where to code the SQL
	Slide 22: So now it’s all dynamic…. Or is it???
	Slide 23: So now it’s all dynamic…. Or is it???
	Slide 24: SQL best practices for distributed access
	Slide 25: SQL best practices for distributed access
	Slide 26: zIIP offload
	Slide 27: Consider using dashboards like this…
	Slide 28
	Slide 29: Broadcom Mainframe Technical Exchanges
	Slide 30: Thank You

