
1

A Db2 Security Primer

Cyrus Ng

IBMCCDUG 2023

The goal of this presentation is to take you through a quick overview of the security
capabilities offered by Db2. We will be focusing (mostly) on built-in Db2 security
functionality and not complementary capabilities offered by other products nor will
we be looking at other important security areas such as dealing with compliance
issues.

Since this presentation is only intended as an overview of Db2 security function, we
will not be covering some very important areas in the security domain such as
compliance or “hardening”.

These are the 4 main areas of security from a functional perspective.

1

2

Database security landscape

Authentication

Authorization

Auditing

Encryption

The goal of this presentation is to take you through a quick overview of the security
capabilities offered by Db2. We will be focusing (mostly) on built-in Db2 security
functionality and not complementary capabilities offered by other products nor will
we be looking at other important security areas such as dealing with compliance
issues.

Since this presentation is only intended as an overview of Db2 security function, we
will not be covering some very important areas in the security domain such as
compliance or “hardening”.

These are the 4 main areas of security from a functional perspective.

2

Authentication

3

4

• Authentication is the process used by Db2 to validate that the credentials
presented for an external user identity are valid and meant for use with the
given user identity

• Db2 relies on external 3rd parties to provide this validation

• The mechanism used for this validation is defined by the AUTHENTICATION
database manager configuration parameter

• All databases under the same Db2 instance use the same authentication mechanism

• Results of a successful authentication:
• External User ID is mapped to a Db2 authorization ID
• Any externally defined groups associated with the user are mapped to Db2

authorization IDs
• Group membership is also defined outside of Db2

Proving you are who you say you are

- Process by Db2 to validate that credentials presented for an external user identity
are valid and meant for use with the given user identity

- Relies on 3rd parties to validate
- Mechanism defined by AUTHENTICATION database manager configuration

parameter
- External User ID mapped to a Db2 authorization ID
- External groups associated with user mapped to Db2 authorization IDs

4

5

• Operating system (default)
• User validation using a password
• Group membership

• Kerberos
• User validation using a Kerberos ticket
• No group membership

• LDAP Plug-in
• User validation using a password
• Group membership

• Customized (via Plug-in)
• User validation (e.g., GSS API) using different credential options
• Group membership

Authentication options

- Default plugins, LDAP plugin use username and password from operating system
- Custom plugins can use different credential options
- Kerberos uses Kerberos to authenticate
- All authentication methods can be configured to provide group membership

information except for Kerberos

5

6

• LDAP = Lightweight Directory Access Protocol (LDAP)
• Standard protocol for accessing information at a directory server
• Enables centralized authentication services for use across enterprise

• The transparent LDAP approach integrates LDAP at the OS level which
means both OS and Db2 authentication requests are satisfied by the
same mechanism

• Db2 authenticates users and acquires their groups via regular OS APIs
• Enabled by setting DB2AUTH registry variable to “OSAUTHDB”

Most popular? Transparent LDAP

- LDAP = Lightweight Directory Access Protocol
- Transparent LDAP means Db2 authenticates via OS APIs

6

7

• Authentication without username/password via JSON Web Token (JWT)

• Identity Provider (IDP) signs the token that is later passed to Db2

• Db2 is configured to "trust" IDPs and use their public key to verify the token

• If the token is valid, Db2 uses the identity within the JWT for authentication

Single sign-on with JSON Web Token (11.5.4.0)

RFC 7519: a compact, URL-safe means of representing claims to be transferred
between two parties
Db2 does not generate JWTs. IDP example: Gluu, Knox SSO
New srvcon_auth types: SERVER_ENCRYPT_TOKEN, GSSPLUGIN_TOKEN etc.

7

88

8

• Sample JWT payload:

• On CLP:

• In JDBC using API

Example

{
"name": "John Doe",
"issuer": "KNOXSSO",
"username": "admin",
"exp": 1516239022

}

CONNECT TO dbname ACCESSTOKEN <token> ACCESSTOKENTYPE JWT

dataSource.setAccessToken("<token>");

dataSource.setAccessTokenType("JWT");

...

Connection conn = dataSource.getConnection();

Support for: CLP, CLI, JDBC .NET, Embedded SQL, CLI derived language support (e.g.
Python, Ruby)

9

• Introduced to help improve performance for password-based
authentication in the following scenarios:

• Connections are of extremely short duration
• Authentication “pipeline” gets overwhelmed

• Cache contains the results of successful authentication efforts and
group lookup results

• Results are only kept for limited amount of time (configurable)
• Cache size is configurable by number of unique user IDs to be cached

• When enabled, incoming requests (and associated credentials) are
compared to cached entries and, if match found, further
authentication processing is bypassed

Authentication cache (11.5.3.0)

9

10

Without the authentication cache

Validation Group lookup

Operating
System /

LDAP

CONNECT with password

Authentication

Db2

Validation and Group Lookup both have to go back to the OS

10

11

With the authentication cache

Validation Group lookup

Operating
System /

LDAP

CONNECT with password

Authentication

Db2

Authentication
Cache

Look in authentication cache first
If not found, query the OS

11

12

Database security landscape

Authentication

Authorization

Auditing

Encryption

LDAP Kerberos JWTOS Customized

As a reminder, the “peach” coloured boxes indicate something new or enhanced in
Db2 11.5.

12

Authorization

13

14

• Authorities and privileges are explicitly declared permissions within
Db2 used to allow users to perform specific actions
➢An action is authorized based on the collection of authorities and privileges

held, directly or indirectly, by an authorization ID

• Authorities represent a predefined collection of Db2 permissions
within a specific domain

• Privileges represent Db2 permissions on a specific database object
• Privilege is on a specific instance of an object (not a specific type of object)

Authorities & privileges: What are they?

14

15

Primary Db2 authorities

Instance
❖ SYSADM

❖ SYSCTRL
❖ SYSMAINT

❖ SYSMON

Database
❖ DBADM

➢ SQLADM
o EXPLAIN

➢ WLMADM
❖ SECADM

➢ ACCESSCTRL
❖ DATAACCESS

Schema (11.5.5.0 for Db2)
❖ SCHEMAADM

➢ LOAD
❖ ACCESSCTRL
❖ DATAACCESS

15

16

• By default, GRANT DBADM also implicitly grants DATAACCESS and
ACCESSCTRL authorities
➢Only do this if they really need it!

Caution: DBADM GRANT statements

Although DATAACCESS and ACCESSCTRL are intended to be independent “peer”
authorities for DBADM, historically they have not been. DBADM used to be
everything… When we separated out the major database authorities in DB2 9.7 (e.g.
SYSADM no long held DBADM, DBADM and SECADM were co-owners of database,
DBADM authority did not mean DATAACCESS and ACCESSCTRL), we decided to
minimize the shock to operations on existing databases by continuing to grant these 2
authorities with the DBADM authority by default. In other words, you have to
opt=out of the traditional behaviour.

16

17

Additional schema level privileges (11.5.5.0 for Db2)

SELECTIN Gives the ability to retrieve rows from all existing and future tables or views defined in the
schema

INSERTIN Gives the ability to insert rows and to run the IMPORT utility on all existing and future
tables or views defined in the schema

UPDATEIN Gives the ability to use the UPDATE statement on all existing and future tables or
updatable views defined in the schema

DELETEIN Gives the ability to delete rows from all existing and future tables or updatable views
defined in the schema

EXECUTEIN Gives the ability run all existing and future user-defined functions, methods, procedures,
packages, or modules defined in the schema

These new privileges are in addition to the existing CREATEIN, ALTERIN, and DROPIN
schema privileges.

17

18

• Authorities and privileges can be associated to a specific Db2
authorization ID

• A Db2 authorization ID consists of:
• Authorization ID type
• Unique authorization ID value (128-byte limit)

• Authorization ID types:
• Individual user (‘U’)
• Group (‘G’)
• Role (‘R’)
• PUBLIC (‘P’)

• Represents all authorization IDs in the “universe”

Authorities & privileges: Who can hold them?

18

19

• Authorization processing considers both a primary authorization ID
and secondary authorization IDs associated with the primary ID

• Specific IDs considered are determined by the context

• Primary authorization ID
• Used to record “who” performed the action
• Represents an individual user ID (‘U’)

• Secondary authorization ID
• One or more authorization IDs associated with the primary authorization ID
• Used to supplement the primary ID's privileges where allowed by Db2
• Represents groups, database roles, and/or PUBLIC

How the different authorization ID types interact

19

20

• SYSTEM AUTHORIZATION ID
• Primary authorization ID (and associated secondary authorization IDs) used to establish the

current session and is checked for CONNECT privilege

• SESSION AUTHORIZATION ID
• Primary authorization ID (and associated secondary authorization IDs) used for any session

authorization checking after CONNECT processing.
➢ The value of the SESSION AUTHORIZATION ID is controlled by the authentication logic but is typically the

same value as the SYSTEM AUTHORIZATION ID

• STATEMENT AUTHORIZATION ID
• Primary authorization ID (and associated secondary authorization IDs) used for any

authorization requirements of an SQL statement
➢ Also used to determine object ownership (for DDL where appropriate).

• Can vary depending on the type of SQL statement and the context in which the statement is
issued
➢ Different sources for dynamic SQL versus static SQL and different options available for routine or non-

routine context

Common Db2 authorization ID terminology

20

21

• Authorities and privileges can be acquired permanently through
explicit and implicit mechanisms

• GRANT and REVOKE SQL statements are the explicit mechanisms
• Can be used for an authorization ID representing user, group, or role

• Object creation and removal are examples of an implicit mechanism
• E.g., Object owner granted some permissions by Db2 as a result of the creation

• Note that other implicit mechanisms exist

• Authorities and privileges can also be acquired temporarily through
different execution contexts

• E.g., You have access to them only while you are in that execution context
• Examples of different execution contexts include static SQL, views, routines,

and trusted contexts

Authorities & privileges: How do you get them?

21

22

• Inheritance
• A privilege on a view implicitly gives you the same access to the objects in the view

definition when using the view
• E.g., Inserting into a view, inserts into a table in the view definition

• Execute privilege on a package gives you the right to execute any static SQL in that
package and inherit the package owner’s privileges through that SQL

• E.g., Executing a package with static DELETE statement, lets you delete from that object

• Alternate authorization models
• Package DYNAMICRULES bind option lets you specify which authorization ID is used

for embedded dynamic SQL issued by that application
• Possible options include able to have the primary authorization ID be the Package Definer or

Executor, the (associated) Routine Definer or Invoker

• Trusted context

Temporary access to authorities and privileges

22

23

• A declaration of a “trust relationship” between the database and an
external application based on a set of explicit of trust attributes:

• System authorization ID
• IP address
• Level of communication security

• A connection that matches the trust attributes for a defined trusted
context is called a trusted connection. There are 2 types:

• An implicit trusted connection
• An explicit trusted connection

• An implicit trusted connection allows a user to inherit a role that is not
available to them outside the scope of that trusted connection
➢The session authorization ID of the connection is given “temporary” membership to

a role declared in the trusted context definition

A trusted context is…

23

24

Implicit trusted connection: Role inheritance

9.26.52.193 Db2 Database

REVOKE CONNECT FROM PUBLIC

CREATE ROLE CONROLE

GRANT CONNECT ON DATABASE TO ROLE
CONROLE

CREATE TRUSTED CTX1 BASED UPON
CONNECTION
USING SYSTEM AUTHID MILLER
ATTRIBUTES (ADDRESS 9.26.52.193)
DEFAULT ROLE CONROLE

User: Miller

9.52.72.245

User: Miller

User Miller can connect (via CONROLE)

User Miller cannot connect

In this example, we have removed CONNECT authority from PUBLIC so that no one
can connect to the database by default. We then create a role and give it CONNECT
authority on the database. We then define a trusted context saying that any
connection established using the MILLER authorization ID from the IP address
9.26.52.193 will be implicitly trusted and will therefore gain access to the role… and
thus will be able to connect to the database.

24

25

• An explicit trusted connection allows a trusted application server to
switch, or assert, the current end-user ID on the existing connection
in an efficient manner

• An application server establishes the original connection with an
explicit request for trust and, once established, it can then issue
requests to the database server to change the session authorization
ID for any new unit of work
➢The ID used to do the initial connect request for the application server only

needs CONNECT privilege

Explicit trusted connections

25

26

Who is doing what ?

User1: privilege(p1) User2: privilege (p2) ………………. Usern: privilege (pn)

Middle-tier application server

Application server user
Privilege (p1,p2,…,pn)

Db2 Database

Who is
connecting to
my database?

In environments where application servers have to deal with many end-user clients, it
is not easy/practical to have the application server establish a separate connection to
the database for each new user
• Overhead of creating a physical connection
• Overhead of user authentication

In some cases, this is not even an option as the application server may not have the
end user credentials to make a connection to the database. To get around this,
customers often end up using a common, shared user ID to connect to the database
and to pass along the end-user database requests. The common user ID becomes a
“super ID” with a union of all the privileges needed by the applications serviced by
the application server.

This makes database auditing and authorization functions effectively useless
• You cannot tell the auditor who did what
• You cannot prevent one user from doing what another user can

27

Identity assertion model

User1: privilege(p1) User2: privilege (p2) ………………. UserN: privilege (pn)

Middle-tier application server

Trusted connection established
by AppServerTrustedID

Db2 Database

CREATE TRUSTED CTX1 BASED UPON CONNECTION
USING SYSTEM AUTHID AppServerTrustedID
ATTRIBUTES (ADDRESS 9.26.52.193)
WITH USE FOR USER1, USER2, USERN

1.Application asserts UserN
when it gives the shared
connection to that user

2.Database uses UserN as
session authorization ID

With a trusted context:
1. User connects to the application
2. Application creates a trusted connection with the database
3. Application switches the user for the trusted connection to UserN
4. Actions can be done on the database as UserN
Audit the correct user
Authorize the correct users for different functionality

27

28

• Sometimes there are requirements to implement authorization
controls that operate within a table object itself at the row, column,
or cell level

• Such controls are referred to as “fine grained access controls” (FGAC)

• FGAC supplement traditional authorization controls and allow
security administrators to control the results sets seen by different
people even when they run the same SQL statement
➢Your privileges do not control what data you can see with FGAC

• Db2 offers two variations of FGAC
• Label-Based Access Control (LBAC)
• Row and Column Access Control (RCAC)

Advanced authorization controls

28

29

29

• LBAC is an implementation of a Mandatory Access Control (MAC) system
• Both the users and the data itself are explicitly assigned a security label value
• The intersection between the user security label and the data security label determines what rows

and columns can be seen by each user
• Based on a set of pre-defined rules on how different security labels interact

• A key prerequisite for LBAC is a clear definition of security labels and assignments
• Change is very difficult to propagate as labels are part of the data itself

• Primary use case is in traditional military and intelligence domains
• Is used in some commercial environments

Label-Based Access Control (LBAC)

30

• RCAC is based on the use of simple, flexible SQL to express customer
supplied rules

• Unlike LBAC, no need to define and assign security labels and no impact on
the underlying data

• RCAC consists of two components:
• Row permissions

• An SQL search condition that describes what set of rows can be accessed

• Column masks
• An SQL CASE expression that describes what column values are permitted to be seen and

under what conditions

Row and Column Access Control (RCAC)

30

31

Row permission example

This example row permission is set to allow access to the current row if the person
accessing it is a patient (determined by PATIENT role membership) looking at their
own record (determined by session authorization ID) or a doctor looking at one of
their own patients.

31

32

Row permissions in action

In the example shown on this slide, three different users can execute the same

query, however they will see different results because of the row permission

that was defined earlier.

32

33

Column mask example

An example column mask where if you belong the PAYROLL role, you can see the
entire social security number and if you belong to the development team, you can
see a masked version of the number. If you are neither, you see a NULL result.

33

34

Column masks at work

In the example shown on this slide, three different users can execute the same

query, however they will see different results because of the row permission

that was defined earlier.

34

35

Database security landscape

Authentication

Authorization

Privileges Instance DatabaseAuthorities

Object Roles/Groups Authorization
models

Trusted Contexts

Auditing

Encryption

Schema

LBAC/RCAC

LDAP Kerberos JWTOS Customized

35

Auditing

36

37

• Two primary options offered with Db2:
• Integration with an external product (IBM Guardium)

• Db2 Audit facility

• Integration with IBM Guardium
• Done using DRDA communication buffer exit on both send and receive

• Offers programmatic ability to terminate a connection if desired

• Db2 audit facility
• Internal audit capability for a pre-defined set of events which provide insight

into who did what, when, and where

Auditing for Db2

Of course, you can also build your own audit capability using triggers or application
logic.

37

38

• Audit can be configured at both instance level and within each database
• Separate audit log for instance and each database

• Configuration can specify desire to audit one or more of the defined event
categories:

• AUDIT: Change in audit settings or audit log access

• CHECKING: Authorization checks

• OBJMAINT: Objects created or dropped (some but not all alterations)

• SECMAINT: Changes to security controls

• SYSADMIN: Use of SYSADM, SYSMAINT, or SYSCTRL authority

• VALIDATE: Authentication or access of system security information

• CONTEXT: Shows contextual information for a database operation

• EXECUTE: Execution of SQL statements

Db2 audit facility

38

39

39

• Database audit is defined using audit policies which are then associated
with specific objects using the AUDIT statement

• Audit policies can be associated with different database objects to control
what is audited

• The database itself
• Tables
• Authorities such as SYSADM, DBADM, and SECADM
• Users and groups
• Roles
• Trusted Connections

• This granularity allows a narrowed focus to be applied on for audit
➢Can result in significant reductions in the amount of audit data

Granularity of database auditing

40

The Audit Facility – Illustrated

A high-level overview of how the Db2 Audit Facility works is depicted on this

slide.

Instance level

- db2audit configure writes to the audit facility configuration files – configures

instance level audit

- Db2audit describe shows the configuration

- Db2audit start/stop controls the instance level audit

- Logged into instance audit file

Database level

- Audit policies define what get audited in the database

- Logged into database audit file

File extraction

- File gets archived

- Extract into either table or somewhere else

40

41

Database security landscape

Authentication

Authorization

Privileges Instance DatabaseAuthorities

Object Roles/Groups Authorization
models

Trusted Contexts

Auditing

Encryption

Schema

LBAC/RCAC

Database Table UserInstance

Role Group Authority Triggers

LDAP Kerberos JWTOS Customized

41

Encryption

42

43

• Guarding communications → Data in transit

• Guarding database storage → Data at rest

Two focus areas

43

Data in transit

44

45

• Where is it relevant?
• Between client and server
• Between HADR primary and standby(s)
• Between Db2 and external products or services (e.g., security products,

remote storage repositories)

• How is it done?
• Communications are protected by encrypting the data being transmitted

using a mechanism generically referred to as SSL (especially in Db2
documentation)

• The current specific industry standard recommendation is TLS 1.3 (Db2 supports this as
of 11.5.8) and TLS 1.2

• SSL = Secure Sockets Layer
• TLS = Transport Layer Security

Guarding communications

45

46

“SSL handshake”

How SSL Works With Db2

A client and server establish a secure SSL connection by performing an "SSL
handshake". During an SSL handshake, a public-key algorithm, usually RSA, is used to
securely exchange digital signatures and encryption keys between a client and a
server. This identity and key information is used to establish a secure connection for
the session between the client and the server. After the secure session is established,
data transmission between the client and server is encrypted using a symmetric
algorithm, such as AES.

The client and server perform the following steps during the SSL handshake:

1. The client requests an SSL connection and lists its supported cipher suites.
2. The server responds with a selected cipher suite.
3. The server sends its digital certificate to the client.
4. The client verifies the validity of the server certificate, for authentication

purposes. It can do this by checking with the trusted certificate authority that
issued the server certificate or by checking in its own key database.

5. The client and server securely negotiate a session key and a message

46

authentication code (MAC).
6. The client and server securely exchange information using the key and MAC

selected.

Note: The Db2 database system does not support the (optional) authentication of the
client during the SSL handshake.

46

47

• Provides integrated protection of
sensitive data in the log stream

• Enabled via the HADR_SSL_LABEL
database configuration parameter

• Supports all HADR
synchronization modes

• Supports multiple standbys

SSL between HADR Primary and Standby servers

When implementing HADR in a Db2 11.1.1.1 environment, you can use SSL

technology to secure TCP/IP communications and encrypt the data that

transferred via log streams between the primary and the standby server—but

only for non-DB2 pureScale deployments on x86 Linux platforms.

Refer to the section “Configuring SSL for the communication between

primary and standby HADR servers” in the v11.1 DB2 LUW Knowledge

Center for more information on how to use this new security capability.

47

48

• Certificates have an expiration date associated with them
➢Once that date (and time) has passed, SSL negotiation will fail

• You will need to update the certificates being used by Db2 in the affected
area(s)

• Client/server
• HADR
• Keystore

• In some of these, a restart of DB2 will be required
• https://www.ibm.com/support/pages/do-we-need-restartrecyle-db2-after-

revisingrenewing-ssl-certificate
➢As of Db2 11.5.2.0, the SSL_SVR_LABEL database manager parameter can now be

updated dynamically (client/server SSL)

Remember SSL certificates expire!

48

https://www.ibm.com/support/pages/do-we-need-restartrecyle-db2-after-revisingrenewing-ssl-certificate
https://www.ibm.com/support/pages/do-we-need-restartrecyle-db2-after-revisingrenewing-ssl-certificate

Data at Rest

49

50

• Where is it relevant?
• Files containing user data such as database files, backup images, and

transaction logs

• How is it done?
• File system encryption such as with Guardium Data Encryption (GDE)

• Db2 native encryption

Guarding (on-disk) database storage

50

51

• Db2 Native Encryption (naturally) encrypts Db2 databases only
• Encrypts your data as it is written to disk.

• The encryption is implemented within Db2 itself.

• Db2 encrypts all internal files including backups but externally used
files are not encrypted

Db2 Encryption

51

52

Db2 Encryption Only

Encrypted File System

Not Encrypted File System

Encrypted File

Not Encrypted File

Db2

Db2 File Systems with
Tablespace and Log Files

Database
Backup

Database
Export

General use file systems

Db2 encrypts all
internal files including
backups; externally
used files are not
encrypted

Database file systems with tablespaces and logs, backups all encrypted
Externally used files like exported files are not encrypted

52

53

• Similarities
• Both are FIPS 140-2 certified cryptographic libraries

• No difference in terms of encryption strength

• Differences
• Db2 automatically/transparently handles encryption across all members

• Db2 works on all Db2 configurations

• Db2 encryption travels with the object (i.e., the object itself is encrypted)

• GDE allows for encryption of other databases besides Db2

• GDE applies to all files written to encrypted file system regardless

Db2 & GDE review

53

54

Db2 + GDE Encryption

Encrypted File System

Not Encrypted File System

Encrypted File

Not Encrypted File

Db2

Db2 File Systems with
Tablespace and Log Files

Database
Backup

Database
Export

General use file systems
encrypted by GDE

Db2 encrypts its
internal files.
GDE encrypts non-Db2
File Systems.

Db2 still encrypts its own files and backups
Exported files now encrypted by Guardium

54

55

• Db2 Native Encryption is built into Db2 to protect data when it is at
rest

• Available in all Db2 offerings free of charge

• Automatically detects and uses CPU hardware acceleration when
available

• Intel AES-NI hardware acceleration

• Power8 in-core support for the Advanced Encryption Standard (AES)

Db2 native encryption

55

56

• Easy to deploy and works on all Db2 platforms
• Transparent to applications!

• No system administrator needed!

• Industrial strength
• FIPS 140-2 certified encryption libraries

• NIST compliant use of cryptography (e.g., NIST SP 800-131)

• Secure and transparent key management

• Encrypts all critical data

Highlights of Db2 Native Encryption

56

57

• Db2 Native Encryption uses an industry standard 2-tier model
• Actual data is encrypted with a Data Encryption Key (DEK)

• DEK is encrypted with a Master Key (MK)

• DEK is managed within the database while the MK is stored
externally in a keystore

Basics of key management

57

58

Keystore options

Db2 Native Encryption uses an industry standard, 2-tier model for key

management

• Data is encrypted with a Data Encryption Key (DEK)

• The DEK is the encrypted with a Master Key (MK) and the encrypted DEK is

stored within the database (or in backup images)

The Master Key (MK) is managed externally and can be stored in a PKCS #12

compliant local keystore, which is created using the IBM Global Security Kit

(GSKit). Db2 V11.1 added support for KMIP 1.1 compliant centralized key

managers like IBM Security Key Lifecycle Manager (ISKLM) and Safenet

KeySecure. And Db2 v11.1.1.1 offers direct support for Hardware Security

Modules (HSMs) – integration with Gemalto (formerly Safenet) Luna SA HSM

and Thales NShield Connect+ is provided.

58

59

Local PKCS#12 keystore

Db2 Native Encryption – Local Keystore

Db2 native encryption uses a standard two-tier model for key management—the
Data Encryption Key (DEK) constitutes the first tier; a second key known as the
Master Key (MK) constitutes the second. (This model is referred to as envelope
encryption in the security industry.) The DEK is the actual key used to perform data
encryption. The DEK is then encrypted with the MK and stored within the database
(or backup image).

The MK is stored outside the database in a Public-Key Cryptography Standards
(PKCS#12) compliant keystore. There are two security protection measures for your
keystore. The first is file permissions. You need to make sure that only the Db2
instance owner has read/write access to the keystore. The second is encryption of
the actual content of the keystore. You need to make sure you create your keystore
with the password option. The content of the keystore (i.e., your master keys) is
encrypted using a symmetric key derived from that password using a hashing
algorithm. Without the password, the content of the keystore cannot be decrypted.

You have the option to stash or not stash the password. Stashing the password is

59

good for secure production environments where you need your Db2 instance to be
able to start without human intervention. You can also choose not to stash the
password and provide it only as needed when starting your Db2 instance. This is
possible through the new open keystore option of the Db2start command. Db2
native encryption also allows you to rotate your MK—you rotate your database MK
by calling the ADMIN_ROTATE_MASTER_KEY procedure. This procedure decrypts the
database DEK with the old MK and then re-encrypts it with the new MK. You have 2
options when calling the ADMIN_ROTATE_MASTER_KEY procedure: you can either
provide a label for the desired new MK or use the default. When using the default,
Db2 automatically generates a new MK and adds it to the keystore on your behalf.
Then, it rotates the current database MK to this newly generated MK.

59

60

Centralized key manager

Db2 Native Encryption – Centralized Key Manager

Beginning with Db2 v11.1, native encryption can utilize an enterprise key
management system, which is a dedicated server for centrally managing encrypting
keys across the enterprise. Some of the more common enterprise key management
systems include IBM Security Key Lifecycle Manager (ISKLM), Safenet, and KeySecure.

The Key Management Interoperability Protocol (KMIP) is a communication protocol
that defines message formats for the manipulation of cryptographic keys on a key
management server.

60

61

Hardware Security Module (HSM)

61

62

• Encryption is not something to rush into as it has implications for availability,
operations, and performance!

• Availability:
• https://www.ibm.com/docs/en/db2/11.5?topic=considerations-keystore-availability-

recoverability
➢Keystore availability issues now become data availability issues

• Operations:
• https://www.ibm.com/docs/en/db2/11.5?topic=considerations-impact-encryption-database-

operations

• Performance:
• https://www.ibm.com/docs/en/db2/11.5?topic=considerations-impact-encryption-

performance
➢CPU hardware acceleration is critical
➢You should plan on completely re-tuning a newly encrypted system

Considering encryption?

62

https://www.ibm.com/docs/en/db2/11.5?topic=considerations-keystore-availability-recoverability
https://www.ibm.com/docs/en/db2/11.5?topic=considerations-keystore-availability-recoverability
https://www.ibm.com/docs/en/db2/11.5?topic=considerations-impact-encryption-database-operations
https://www.ibm.com/docs/en/db2/11.5?topic=considerations-impact-encryption-database-operations
https://www.ibm.com/docs/en/db2/11.5?topic=considerations-impact-encryption-performance
https://www.ibm.com/docs/en/db2/11.5?topic=considerations-impact-encryption-performance

Thank You!
Speaker: Cyrus Ng
Company: IBM
Email Address: cyrus.ng@ibm.com

Mitchell has been a member of the Db2 security development team since 2016,
where he has worked on all aspects of security within Db2, including authentication,
authorization, auditing and encryption.

63

	Slide 1
	Slide 2: Database security landscape
	Slide 3: Authentication
	Slide 4: Proving you are who you say you are
	Slide 5: Authentication options
	Slide 6: Most popular? Transparent LDAP
	Slide 7: Single sign-on with JSON Web Token (11.5.4.0)
	Slide 8: Example
	Slide 9: Authentication cache (11.5.3.0)
	Slide 10: Without the authentication cache
	Slide 11: With the authentication cache
	Slide 12: Database security landscape
	Slide 13: Authorization
	Slide 14: Authorities & privileges: What are they?
	Slide 15: Primary Db2 authorities
	Slide 16: Caution: DBADM GRANT statements
	Slide 17: Additional schema level privileges (11.5.5.0 for Db2)
	Slide 18: Authorities & privileges: Who can hold them?
	Slide 19: How the different authorization ID types interact
	Slide 20: Common Db2 authorization ID terminology
	Slide 21: Authorities & privileges: How do you get them?
	Slide 22: Temporary access to authorities and privileges
	Slide 23: A trusted context is…
	Slide 24: Implicit trusted connection: Role inheritance
	Slide 25: Explicit trusted connections
	Slide 26: Who is doing what ?
	Slide 27: Identity assertion model
	Slide 28: Advanced authorization controls
	Slide 29: Label-Based Access Control (LBAC)
	Slide 30: Row and Column Access Control (RCAC)
	Slide 31: Row permission example
	Slide 32: Row permissions in action
	Slide 33: Column mask example
	Slide 34: Column masks at work
	Slide 35: Database security landscape
	Slide 36: Auditing
	Slide 37: Auditing for Db2
	Slide 38: Db2 audit facility
	Slide 39: Granularity of database auditing
	Slide 40: The Audit Facility – Illustrated
	Slide 41: Database security landscape
	Slide 42: Encryption
	Slide 43: Two focus areas
	Slide 44: Data in transit
	Slide 45: Guarding communications
	Slide 46: “SSL handshake”
	Slide 47: SSL between HADR Primary and Standby servers
	Slide 48: Remember SSL certificates expire!
	Slide 49: Data at Rest
	Slide 50: Guarding (on-disk) database storage
	Slide 51: Db2 Encryption
	Slide 52: Db2 Encryption Only
	Slide 53: Db2 & GDE review
	Slide 54: Db2 + GDE Encryption
	Slide 55: Db2 native encryption
	Slide 56: Highlights of Db2 Native Encryption
	Slide 57: Basics of key management
	Slide 58: Keystore options
	Slide 59: Local PKCS#12 keystore
	Slide 60: Centralized key manager
	Slide 61: Hardware Security Module (HSM)
	Slide 62: Considering encryption?
	Slide 63: Speaker: Cyrus Ng Company: IBM Email Address: cyrus.ng@ibm.com

