
Toronto

Unleashing the Potential of
Columnar Tables in Db2

Satya Krishnaswamy, IBM

Central Canada Db2 Users Group

Please note :
IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice and
at IBM’s sole discretion.
• Information regarding potential future products is intended to outline our general product direction and it should

not be relied on in making a purchasing decision.
• The information mentioned regarding potential future products is not a commitment, promise, or legal obligation

to deliver any material, code or functionality. Information about potential future products may not be
incorporated into any contract.

• The development, release, and timing of any future features or functionality described for our products remains at
our sole discretion.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon many
factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that
an individual user will achieve results similar to those stated here.

2

AGENDA

Columnar Data Engine (CDE) in Db2

Storage and compression of Columnar Table

Recent improvements

What’s coming

Creating a Column-Organized Table

• If dft_table_org = COLUMN
• ORGANIZE BY COLUMN is the default and can be omitted
• Use ORGANIZE BY ROW to create row-organized tables

• DB2_WORKLOAD=ANALYTICS Sets Everything You Need

CREATE TABLE sales_col (
 c1 INTEGER NOT NULL,
 c2 INTEGER,
 . . .
 PRIMARY KEY (c1)) ORGANIZE BY COLUMN;

4

What you see in the Db2 catalog: TABLEORG

• Which tables are column-organized?
• Column In syscat.tables: TABLEORG

SELECT tabname, tableorg, compression
FROM syscat.tables
WHERE tabname like 'SALES%';

TABNAME TABLEORG COMPRESSION
------------------------------- -------- -----------
SALES_COL C
SALES_ROW R N

 2 record(s) selected.
For column-organized

tables, COMPRESSION is
always blank because you

cannot enable/disable
compression.

Columnar storage in Db2 (conceptual)

Mike Hernandez
Chou Zhang

Carol Whitehead
Whitney Samuels
Ernesto Fry
Rick Washington
Pamela Funk

Sam Gerstner
Susan Nakagawa
John Piconne

Mike Hernandez
Chou Zhang

Carol Whitehead
Whitney Samuels
Ernesto Fry
Rick Washington
Pamela Funk

Sam Gerstner
Susan Nakagawa
John Piconne

43
22

61
80
35
78
29

55
32
47

43
22

61
80
35
78
29

55
32
47

404 Escuela St.
300 Grand Ave

1114 Apple Lane
14 California Blvd.
8883 Longhorn Dr.
5661 Bloom St.
166 Elk Road #47

911 Elm St.
455 N. 1st St.
18 Main Street

404 Escuela St.
300 Grand Ave

1114 Apple Lane
14 California Blvd.
8883 Longhorn Dr.
5661 Bloom St.
166 Elk Road #47

911 Elm St.
455 N. 1st St.
18 Main Street

CA
CA

CA
CA
AZ
NC
OR

OH
CA
MA

CA
CA

CA
CA
AZ
NC
OR

OH
CA
MA

90033
90047

95014
91117
85701
27605
97075

43601
95113
01111

90033
90047

95014
91117
85701
27605
97075

43601
95113
01111

Los Angeles
Los Angeles

Cupertino
Pasadena
Tucson
Raleigh
Beaverton

Toledo
San Jose
Springfield

Los Angeles
Los Angeles

Cupertino
Pasadena
Tucson
Raleigh
Beaverton

Toledo
San Jose
Springfield

Name Age Address City State Zip Code

John Piconne 47 18 Main Street Springfield MA 01111

Susan Nakagawa 32 455 N. 1st St. San Jose CA 95113

Sam Gerstner 55 911 Elm St. Toledo OH 43601

Chou Zhang 22 300 Grand Ave Los Angeles CA 90047

Mike Hernandez 43 404 Escuela St. Los Angeles CA 90033

Pamela Funk 29 166 Elk Road #47 Beaverton OR 97075

Rick Washington 78 5661 Bloom St. Raleigh NC 27605

Ernesto Fry 35 8883 Loghorn Dr. Tucson AZ 85701

Whitney Samuels 80 14 California Blvd. Pasadena CA 91117

Carol Whitehead 61 1114 Apple Lane Cupertino CA 95014

John Piconne 47 18 Main Street Springfield MA 01111

Susan Nakagawa 32 455 N. 1st St. San Jose CA 95113

Sam Gerstner 55 911 Elm St. Toledo OH 43601
Chou Zhang 22 300 Grand Ave Los Angeles CA 90047

Mike Hernandez 43 404 Escuela St. Los Angeles CA 90033

Pamela Funk 29 166 Elk Road #47 Beaverton OR 97075
Rick Washington 78 5661 Bloom St. Raleigh NC 27605

Ernesto Fry 35 8883 Longhorn Dr. Tucson AZ 85701
Whitney Samuels 80 14 California Blvd. Pasadena CA 91117

Carol Whitehead 61 1114 Apple Lane Cupertino CA 95014

• Traditional approach: data stored in row format

• Each page contains 1 or multiple rows (all columns)

Page

Page

Page

Page

Row-Organized Table Format

7

Tuple Sequence Number (TSN)

Mike Hernandez
Chou Zhang

Carol Whitehead
Whitney Samuels
Ernesto Fry
Rick Washington
Pamela Funk

Sam Gerstner
Susan Nakagawa
John Piconne

Mike Hernandez
Chou Zhang

Carol Whitehead
Whitney Samuels
Ernesto Fry
Rick Washington
Pamela Funk

Sam Gerstner
Susan Nakagawa
John Piconne

43
22

61
80
35
78
29

55
32
47

43
22

61
80
35
78
29

55
32
47

404 Escuela St.
300 Grand Ave

1114 Apple Lane
14 California Blvd.
8883 Longhorn Dr.
5661 Bloom St.
166 Elk Road #47

911 Elm St.
455 N. 1st St.
18 Main Street

404 Escuela St.
300 Grand Ave

1114 Apple Lane
14 California Blvd.
8883 Longhorn Dr.
5661 Bloom St.
166 Elk Road #47

911 Elm St.
455 N. 1st St.
18 Main Street

CA
CA

CA
CA
AZ
NC
OR

OH
CA
MA

CA
CA

CA
CA
AZ
NC
OR

OH
CA
MA

90033
90047

95014
91117
85701
27605
97075

43601
95113
01111

90033
90047

95014
91117
85701
27605
97075

43601
95113
01111

Los Angeles
Los Angeles

Cupertino
Pasadena
Tucson
Raleigh
Beaverton

Toledo
San Jose
Springfield

Los Angeles
Los Angeles

Cupertino
Pasadena
Tucson
Raleigh
Beaverton

Toledo
San Jose
Springfield

TSN
0
1
2
3
4
5
6
7
8
9
10
11
…

TSN =
Tuple
Sequence
Number

TSN =
Tuple
Sequence
Number

page

page

• Each tuple (row) in the table is assigned a TSN, which is similar to a Row ID.
• A tuplet is the projection of a column group on a tuple
• TSNs are used to stitch tuplets together during query processing
• The “start TSN” of each page is stored in the Page Map Index (PMI) for lookup of values

by TSN

Column
Group 1

Column
Group 2

Column
Group 3

Column
Group 4

Column
Group 5

Column
Group 6

tuple

tuplet

Extents and Pages

• Each column group has their
own data pages to store column
data
• Data pages are grouped into

extents
• Extents, rather than individual

pages, are the basic unit of data
to be allocated and freed when
required
• Typically, four pages will make

up one extent

P0 P1 P2 P3E1

P4 P5 P6 P7E2

P8 P9 P10 P11E3

Column Groups and NULL values

• Each column in the table belongs to exactly one column group
• Currently, the only reason for a column group to hold multiple

columns is if a column is nullable.
• The column in the table will be represented in the column group as a

nullable column holding the data and an internal null indicator
column.
• The null indicator column contains 1-bit values indicating if the value for the

corresponding column in the table is null.

• Null indicator values are either packed together with the data values
in a single bank or stored in a separate bank within a region.

Null values example

Table (External Representation):

Table (Internal Representation):

Name Age NI
(Age)

Address NI
(Address)

City NI
(City)

State NI
(State)

Zip
Code

NI (Zip
Code)

John
Piconne

? 1 18 Main
Street

0 ? 1 MA 0 01111 0

Susan
Nakagawa

32 0 ? 1 San
Jose

0 ? 1 95113 0

Name (NOT NULL) Age Address City State Zip Code

John Piconne NULL 18 Main Street NULL MA 01111

Susan Nakagawa 32 NULL San Jose NULL 95113

? = Value that can be encoded to the least amount of bits

Synopsis Table
S_DATE QTY ...

2005-03-01 176 ...

2005-03-02 85 ...

2005-03-02 267

2005-03-04 231

...

...

...

...

User table: SALES_COL

SYN130330165216275152_SALES_COL

TSNMIN TSNMAX S_DATEMIN S_DATEMAX ...

0 1023 2005-03-01 2006-10-17 ...

1024 2047 2006-08-25 2007-09-15 ...

...

TSN = Tuple Sequence Number

0

1023

1024

2047

§ Meta-data that describes which ranges of
values exist in which parts of the user table

§ Enables Db2 to skip portions of table when scanning data during query
§ Benefits from data clustering, loading pre-sorted data
§ Predicate WHERE S_DATE = 2007-01-01 would skip first range
§ Predicate WHERE S_DATE = 2006-09-12 would scan both ranges

0

1023

Synopsis Table: Example

TSN Name Age
0 John Piconne 47

1 Susan Nakagawa 32

2 Sam Gerstner 55

3 Chou Zhang 22

4 Mike Hernandez 43

5 Pamela Funk 29

6 Rick Washington 78

7 Ernesto Fry 35

8 Whitney Samuels 80

9 Carol Whitehead 61

Base Table: Synopsis Table (Synopsis tuple covers 5 base table tuples):

TSN
MIN

TSN
MAX

NAMEMIN NAMEMAX AGE
MIN

AGE
MAX

0 4 Chou Zhang Susan Nakagawa 22 55

5 9 Carol Whitehead Whitney Samuels 29 80

What you see in the Db2 catalog: Synopsis
Tables
• Each columnar table has a corresponding synopsis table with a few

exceptions
• Automatically created/maintained
• Queries use the synopsis table to determine if it can skip ranges of rows

when evaluating predicates
SELECT tabschema, tabname, tableorg
FROM syscat.tables
WHERE tableorg = 'C';

TABSCHEMA TABNAME TABLEORG
--------------- ---------------------------------- --------
MNICOLA SALES_COL C
SYSIBM SYN130330165216275152_SALES_COL C

 2 record(s) selected.

• Most columns have a mix of both encoded and
unencoded values.

When Data is Encoded vs. Unencoded

Encoded Unencoded

• A column value is stored encoded if a dictionary
entry can be used to encode that data

• Dictionary entry can be used
• Internal columns like NULL indicator columns,

which are encoded using 1 bit
• DECIMAL columns, minus coding if precision <=18

(imposed by 64-bit code size limit)

• A value is stored unencoded if it cannot be
represented in the dictionary

• Values that occur infrequently (e.g., value occurs
once, inefficient to create a dictionary value)

• Values that were pruned from the histogram due
to memory constraints

• Values that were INSERTed/LOADed after
dictionary creation, not covered by existing
dictionary (static)

Encoding differs from compression, a value can be unencoded and still be compressed with …, but
the value needs to be decompressed before queries can be performed on it. This is why we refer to
pure dictionary encoded and encoding types as actionable compression.

16

Columnar Compression

• Columnar compression dictionaries are used to
compress data in a column of a columnar table
by mapping repeated byte patterns to much
smaller symbols, which then replace the longer
byte patterns in the table.

• Frequency compression
• Most common values use fewest bits

• Encoding Schemes
• Pure dictionary coding
• Prefix coding
• Minus coding

17

Since all data in a column are of the same data
type, we can improve the compression ratio by
exploiting the skew in data distribution.
Column compression differs from row compression
in that we map values to dictionary codes.

Benefits
• Save disk space by reducing total amount of buffer

pool pages needed to store data.
• Faster queries, a compressed table need fewer I/O

operations to access the same amount of data.

Column-level Dictionaries are Static

• Once created, column-level
dictionaries are never updated
• REORG does not rebuild column-level dictionaries
• Row organized tables can use REORG to rebuild the

dictionary
• The user must unLOAD and reLOAD the table to rebuild

the dictionary

18

Page compression reduces the need
to rebuild column dictionaries
• New values not covered by the initial column-level

dictionary can still be compressed by the page-level
dictionary

• This reduces deteriorating the compression ratio over
time

• When a page fills up, decide whether to do page
compression

Update Column-level
dictionaries Page Compression

Best Practices – Enable All Optional BLU Storage Enhancements

19

Feature Description Release Db2 Db2
Warehouse

Page-based String
Compression Type 1

Improves compression for high
cardinality string columns with
repeating portions of strings that
are not encoded by existing
compression algorithms

11.5.4 Need Registry
Variable to Enable

Registry Variable (2)

Enabled by Default

Page-Based String
Compression Type 2

Improved compression when
strings (within a page) contain 16
or less unique characters, works
well for hex, numeric items like
phone numbers, dates, dollar
values when stored as strings

11.5.4 Need Registry
Variable to Enable

Registry Variable (2)

Enabled by Default

Deferred Synopsis
Tuple Creation for
Small Base Tables

Reduces synopsis table storage
consumption for small base tables

11.5.4 Need Registry
Variable to Enable

Registry Variable (3)

Enabled by Default

Best Practices – Enable All Optional BLU Storage Enhancements

20

Feature Description Release Db2 Db2
Warehouse

Reorg Table
Recompress
Enhancement

Improves performance of Reorg Table
Recompress and applies page-based string
compression during Reorg Table
Recompress

11.5.5 Enabled by Default Enabled by
Default

Trickle Feed
Insert
Enhancement

Speeds up trickle feed insertion, reduces
the memory footprint and size of small
tables.

11.5.6 Not available Enabled by
Default

11.5.7 Need Registry Variable
to Enable

Registry Variable (1)

Enabled by
Default

LOAD Utility
Enhancement

Improves overall LOAD processing, and
also if the previously mentioned string
compression algorithms are enabled
allows LOAD to use them

11.5.8 Enabled by Default Enabled by
Default

7 Big Ideas

• Simple to Implement and Use (Load & Go)
• Data Remains Compressed During Evaluation
• Multiply the Power of the CPU
• Core-Friendly Parallelism
• Work performed directly on columns
• Scan-Friendly Memory Caching
• Data skipping

7 Big Ideas: How Db2 with BLU Acceleration Helps
~Sub second 10TB query – An Optimistic Illustration

• The system – 32 cores, 10TB table with 100 columns, 10 years of data

• The query: SELECT COUNT(*) from MYTABLE where YEAR = ‘2010’

• The optimistic result: sub second 10TB query! Each CPU core examines the equivalent of
just 8MB of data

DATA
DATA
DATA

DATA
DATA
DATA

DATA
DATA
DATA

10TB data

DATA

1TB after storage savings

DATA

32MB linear scan
on each core

Scans as fast as 8MB
encoded and SIMD

DATA

Subsecond 10TB
query

Db2
WITH BLU
ACCELERATION

10GB column
access

1GB after
data skipping

22

Thank You

Speaker: Satya Krishnaswamy
Company: IBM
Email Address: satya.ksr@us.ibm.com

