
DB2 SQL – go beyond
the usual – My current

TOP 40 SQL tips, tricks,
and opinions

Brian Laube

Manulife Financial

Platform: Db2 z & Db2 LUW

Session Code: AP11

Central Canada Db2 User
Group 2023

Sept 18/19 2023

Welcome to my presentation

• My name is Brian Laube.

• I work for Manulife Financial in Canada, known as John Hancock in the USA
• DB2 DBA for over 20 years! Mostly zOS, some LUW. I can bluff my way through Db2 Connect

• I have presented at several IDUG NA (and two EMEA) since 2016

• Director of Central Canada (Toronto) user group since 2015. also presented

• IBM Champion for analytics since 2017

• Currently Chair of the IDUG content committee. We gather and write and organize
BLOGs on topics of interest for all IDUG members!

• https://www.idug.org/learn/content-articles
• Do you have any Db2 interests or experiences to share? Try blogging with us! Contact me and

write a one-off blog or simply join the committee and help us get it done!

https://www.idug.org/learn/content-articles

IDUG CONTENT COMMITTEE

• I am a volunteer with IDUG. I am on the
committee that organizes the CONTENT
BLOG

• https://www.idug.org/learn/content-articles

• Visit our site. Review past blogs. There is
always something interesting to learn for
both Db2 Z and Db2 LUW.

We are always looking for USERS of Db2 who are interested in writing an article or
blog for IDUG Content! On any topic Db2 related! War Stories, experience with new
Db2 functionality. Application! Development, Tools,
It is a great help to becoming an IBM Champion!
It is a great way to meet others and share your knowledge with the community.
Contact any of us (names on website > or contact me > brian@spufi.ca)

https://www.idug.org/learn/content-articles

3

https://www.idug.org/learn/content-articles
mailto:brian@spufi.ca

Agenda

• Modern SQL – Db2 and SQL have both evolved over the years!

• Opinions on SQL – I have opinions on what is better

• Best Practices for SQL – Beyond the usual best practices

• Questions

Pre-amble (1|2)

• There are many good resources for opinions
on SQL best practices. On the internet, in
books and hopefully in your shop.

• The Db2 SQL Tuning Tips for z/OS Developers
by Tony Andrews has many practical short tips.
Excellent.

• Craig Mullens has several books (and blogs). I
read the Db2 Developers Guide

• IDUG Content blog has many great blogs on this
broader topic, including the following

• https://www.idug.org/blogs/tony-andrews1/20
22/09/28/db2-for-zos-sql-and-application-new-
features-v8-v1

https://www.idug.org/blogs/tony-andrews1/2022/09/28/db2-for-zos-sql-and-application
-new-features-v8-v1

5

https://www.idug.org/blogs/tony-andrews1/2022/09/28/db2-for-zos-sql-and-application-new-features-v8-v1
https://www.idug.org/blogs/tony-andrews1/2022/09/28/db2-for-zos-sql-and-application-new-features-v8-v1
https://www.idug.org/blogs/tony-andrews1/2022/09/28/db2-for-zos-sql-and-application-new-features-v8-v1

Pre-amble (2|2)

• This presentation is not meant to restate what you can get from the
previously mentioned usual sources for SQL tips

• I am trying to remind people of some new ways of doing things in SQL
that I think are interesting. New functions in Db2 Z (and Db2 LUW).
Modern SQL!

• I will also give what I think are important “best practices” for SQL.
• Things that people STILL forget!

• I will also give my opinion on the right way to do things!
• Obviously, opinions are my own and your mileage may vary.

Modern SQL – typing FETCH FIRST nn ROWS ONLY is tiring. Use LIMIT

• FETCH FIRST NN ROWS ONLY has been around since forever.
• We use it to tell Db2 that we only want NN rows from the table

• The new LIMIT syntax is easy to type and fast.
• LIMIT requires APPLICATION COMPATIBILITY at 12R1M500+

-- TRADITIONAL FETCH FIRST NN ROWS ONLY
SELECT * FROM EMP
ORDER BY EMPNO
FETCH FIRST 15 ROWS ONLY
;

-- CHECK > APPL COMPATIBILITY SHOULD BE V12R1M500 OR
HIGHER
SELECT CURRENT APPLICATION COMPATIBILITY
 FROM SYSIBM.SYSDUMMY1;
--SET CURRENT APPLICATION COMPATIBILITY = 'V12R1M500';

-- EQUIVALENT SQL SYNTAX USING LIMIT
SELECT * FROM EMP
ORDER BY EMPNO
LIMIT 15
;

Modern SQL – SQL pagination

• Use OFFSET to tell Db2 to build the result set and
order by as required (as always) and then skip over
the first OFFSET nn rows.

• Link to IDUG content blog on this topic:
• https://www.idug.org/blogs/tony-andrews1/2022/10/03/sql-pagination-dat

a-dependent-new-syntax-and-numer

-- THESE 3 SELECT PRODUCE THE
SAME RESULT SET
SELECT * FROM EMP
ORDER BY EMPNO
OFFSET 05 ROWS FETCH FIRST 10
ROWS ONLY
;
SELECT * FROM EMP
ORDER BY EMPNO
LIMIT 10 OFFSET 05
;
SELECT * FROM EMP
ORDER BY EMPNO
LIMIT 05,10
;

https://www.idug.org/blogs/tony-andrews1/2022/10/03/sql-pagination-data-dependent-
new-syntax-and-numer

8

https://www.idug.org/blogs/tony-andrews1/2022/10/03/sql-pagination-data-dependent-new-syntax-and-numer
https://www.idug.org/blogs/tony-andrews1/2022/10/03/sql-pagination-data-dependent-new-syntax-and-numer

OPINION – Why use OPTIMIZE FOR N ROWS (1|2)

• You can add OPTIMIZE FOR N ROWS as the final clause to tell the
optimizer you want it to anticipate only N rows in the final result set.

• This information may influence the optimize to pick a relatively different
access path!

• Just to be super clear. You are telling the optimizer to anticipate N
rows in the result set. But if there are many more rows (or many less)
then N, your application can get as many rows as it wants! So maybe
it will get all the rows!

OPINION – Why use OPTIMIZE FOR N ROWS (2|2)

• If you use OPTIMIZE FOR 1 ROWs then this is how you TELL the
optimizer that you really expect 1 row and you plan on fetching
1 row. The optimizer will review and do everything it can to
avoid sorting large sets. You can still fetch how ever many
rows you want from the result set.

• Basically, if possible, the optimizer will use an index. It will try
to avoid sorting and use an index even if the static statistics
would normally suggest it not do that!

• TABLEA (COLA,COLB) has one index on COLA. And the static statistics
say the table has 2 rows

• Query1: the optimizer may decide to do a tablespace scan and just
internally sort the 2 rows. That will be 1 I/O and relatively fast.

• Query2: the optimizer may NOW decide to do I/O to index and then
I/O to tablespace. Two I/O! Relatively expensive. But no sorting!

SELECT * -- query1
FROM TABLEA
ORDER BY COLA
;

SELECT * -- query2
FROM TABLEA
ORDER BY COLA
OPTIMIZE FOR 1
ROWS
;

Best Practice – Volatile Tables

• Creating (or altering) a table with VOLATILE attribute is
another way to influence the optimizer to pick index
access.

• We mark certain tables as VOLATILE when we know the
quantity of rows can vary from zero to a million. It is just a
sequential dump table (unsurprisingly called TSEQ). We
LOAD a million rows and then empty the table later.

• If we run RUNSTATS when the table is empty then later
optimizer decisions may be misleading. VOLATILE helps
remind Db2 to consider indexes, regardless of what the
static statistics say!

SELECT * -- query1
FROM TABLEA
ORDER BY COLA
;

SELECT * -- query2
FROM TABLEA
ORDER BY COLA
OPTIMIZE FOR 1
ROWS
;

OPINION – STATIC STATISTICS and REAL-TIME-STATISTICS [RTS] (1|2)

•Let me state it out loud.
•Static statistics are gathered by RUNSTATS (or inline STATISTICS in REORG and other
utilities)
•I call them “static” statistics because they are accurate at the moment in time the
statistics were gathered! But as time goes on, they may become out of sync with
reality
•The static statistics are stored all over the Db2 catalog in various tables and
contain lots of meta-info about the data including cardinality and distribution and
common values.
•The Db2 OPTIMIZER eats all this information for making access path decisions.

I often say “static statistics” when referring to statistics gather by RUNSTATS or inline
STATISTICS These “static statistics” are not to confused with the real-time-statistics

12

OPINION – STATIC STATISTICS and REAL-TIME-STATISTICS [RTS] (2|2)

•The real-time-statistics (RTS) are gathered by Db2 all the time and updated
constantly. SYSTABLESPACESTATS & SYSINDEXSPACESTATS. These tables contain
basic meta-data about these physical objects and big info about your physical
objects. The RTS is intended to aid your decisions when to run Db2 Utilities
(REORG, COPY, or RUNSTATS itself)
•Interestingly, the RTS is incredibly accurate.

•If you want to make informed decisions about WHEN to run utilities, then you can
manually make your own query to the RTS.
•A popular option for keeners is to use IBM provided procedure DSNACCOX which is
documented by IBM documentation. Lots of decisions and things to think about (of
course)
•https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-dsnaccox

• The RTS has no influence to the optimizer!

I often say “static statistics” when referring to statistics gather by RUNSTATS or inline
STATISTICS These “static statistics” are not to confused with the real-time-statistics

13

https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-dsnaccox

Best Practice – understand RTS (1|2)

• The RTS provides powerful information and quickly helps you understand
your physical objects. It is important to review the column descriptions and
understand what info is provided by RTS

• https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-systablespacestats
• SPACE is allocated space in KB (divide by 48 to see tracks!)
• DATASIZE is amount of space used inside the allocated space, in bytes! (not KB)
• TOTALROWS (should be obvious)
• UNCOMPRESSEDDATASIZE – good name! But is a trick! Not used! Always zero

• https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-sysindexspacestats
• TOTALENTRIES – nbr of entries in the index (if unique -> should equal totalrows)

• Keen users of RTS will enable them as temporal tables with their
corresponding “history” tables. This is fine. I did it. But think about purge
strategy in the history table!

Knowing the column descriptions of RTS tables is important.
SPACE divided by 48 is the exact quantity of tracks for the dataset. It always
matches for me!
In my world. My virtual DASD still has tracks and cylinders. Db2 uses 48KB per track
(and gets 15 tracks per cylinder)
I sometimes convert SPACE and DATASIZE to MB or GB to make it easier to read.
I SPACE by DATASIZE

14

https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-systablespacestats
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-sysindexspacestats

Best Practice – understand RTS (2|2)
-- QUERY TO RTS FOR TS TO REVIEW
-- TABLESPACES SPACE,DATASIZE, PCT_USED
-- > LATER, COULD BE JOINED TO CATALOG
-- TABLES FOR TS TO FIND TYPE AND COMPRESSION
select COALESCE(DBNAME,'-ALL-') AS DBNAME
, COALESCE(NAME,'-') AS TSNAME
, SUM(SPACE)/1024 AS SPACE_MB
, SUM(SPACE)/48 AS SPACE_TRKS
, SUM(DATASIZE)/1024/1024 AS DATASIZE_MB
, DECIMAL(FLOAT(SUM(DATASIZE)/1024
 /FLOAT(SUM(SPACE)) * 100)
 ,9,2) AS PCT_USED
, SUM(TOTALROWS) AS TOTALROWS
, MAX(PARTITION) AS MAX_PART
, COUNT(*) AS CNT
FROM SYSIBM.SYSTABLESPACESTATS
WHERE 1=1
 AND DBNAME NOT LIKE 'DSN%' -- IGNORE
 AND DBNAME NOT LIKE 'PTDB%' -- IGNORE

GROUP BY GROUPING SETS ((DBNAME, NAME),())
ORDER BY SPACE_MB DESC
FETCH FIRST 99 ROWS ONLY
;

 DBNAME TSNAME SPACE_MB SPACE_TRKS DATASIZE_MB PCT_USED TOTALROWS MAX_PART CNT
 -------- -------- -------- ---------- ----------- -------- ----------- --------

 -ALL- - 1905292 40646239 1399102 73.43 16908212253 70
3434
 DIL01P ZHH 319903 6824610 242061 75.66 2382176145 70
70
 DYR01P ZDDDDD 171765 3664335 143262 83.40 614870209 64
64
 DYR01P ZRGSD 92813 1980015 76292 82.20 717490535 32
32
 DYR01P ZNTSD 80002 1706730 66596 83.24 494017180 32
32
 DYB01P ZCLM 71658 1528725 57888 80.78 743865554 20
20
 DIL04P ZUHCO 61457 1311090 43522 70.81 1099519653 14
14
 DIL01P ZUHCO 56670 1208970 39470 69.64 1103649819 14
14
 DCL01P ZAHI 55132 1176165 41458 75.19 446448299 20
20
 DYD01P ZELTRC 54245 1157229 46280 85.31 267652215 14
14
 DYR01P ZDNTDISP 48610 1037025 40462 83.23 185864163 32
32
 DIL04P ZCFLW 48441 1033425 39017 80.54 445950137 14
14
 DIL01P ZCFLW 47379 1010760 38370 80.98 447849889 14
14
 DYR01P ZHLTDISP 46545 992970 38997 83.78 167179361 32
32
 DYB01P ZGLCLM 42558 907920 32858 77.20 615299136 11
11
 DYR01P ZHLTSD 37513 800295 30776 82.04 278814838 32
32
 DYD01P ZAUXGFD 30569 652138 0 0.00 976514 0
1Knowing the column descriptions of RTS tables is important.

SPACE divided by 48 is the exact quantity of tracks for the dataset. It always
matches for me! Look it matches in the screenshots
In my world. My virtual DASD still has tracks and cylinders. Db2 uses 48KB per track
(and gets 15 tracks per cylinder)
I sometimes convert SPACE and DATASIZE to MB or GB to make it easier to read.
I SPACE by DATASIZE

15

Modern SQL – Stop Joining in your WHERE clause. Use JOIN syntax

• Classic (old-fashioned) “joining” tables in the
FROM <table list> via WHERE clause is
classic. Of course, it is only for “inner join”

• Modern SQL “join” syntax is more explicit
and allows left outer join which is so very
often useful!

-- old fashioned JOIN - inner
SELECT E.EMPNO, E.FIRSTNME,
E.LASTNAME, E.WORKDEPT, D.DEPTNAME
FROM EMP E, DEPT D
WHERE 1=1
 AND E.WORKDEPT = D.DEPTNO
ORDER BY E.EMPNO
;

-- modern JOIN syntax
-- same result as above
SELECT E.EMPNO, E.FIRSTNME,
E.LASTNAME, E.WORKDEPT, D.DEPTNAME
FROM EMP E
INNER JOIN DEPT D
 ON E.WORKDEPT = D.DEPTNO
WHERE 1=1
ORDER BY E.EMPNO
;

Opinion – join syntax should always be explicit

• I already said stop using join via FROM table list and
WHERE clause joining.

• Use JOIN syntax.

• The default when joining two tables is INNER JOIN. So
you don’t have to write the word INNER. But I
encourage to explicit and put INNER.

• It is just clearer to say INNER when you know it is INNER

• More opinion > How often should you code “right
outer join”? Never. It confuses me. LEFT OUTER JOIN
is more common. And besides, if you code right outer
join, Db2 will just internally transform it to LEFT. Even
Db2 dislikes right outer join!

-- EXPLICIT INNER JOIN
SELECT A.COL1, A.COL2, B.COLX
FROM TABLEA A
INNER JOIN TABLEB B
 ON (A.COL1 = B.COL1)
ORDER BY A.COL1
;

-- MAYBE NO B ROW EXISTS
SELECT A.COL1, A.COL2, B.COLX
FROM TABLEA A
LEFT OUTER JOIN TABLEB B
 ON (A.COL1 = B.COL1)
ORDER BY A.COL1
;

This becomes more and more beneficial when matching on many columns. Much
easier to read!

Modern SQL – match on groups of columns

• We can now match table
columns in joins or where clause
with sets or groups of columns.
This makes the SQL easier to
read and reduces overall length
because I now put groups of
columns on one line!

• I use it all the time in JOIN!

• It also works in correlated
sub-selects!

SELECT Z.DBNAME, Z.NAME AS TSNAME
, Z.TYPE AS TSTYPE
, T.CREATOR AS TCREATOR, T.NAME AS TNAME
, T.TYPE AS TTYPE
FROM SYSIBM.SYSTABLESPACE Z
LEFT OUTER JOIN SYSIBM.SYSTABLES T
 ON (Z.DBNAME,Z.NAME) = (T.DBNAME,T.TSNAME)
 AND T.TYPE = 'T'
WHERE 1=1
 AND Z.DBNAME = 'DSN8D12A'
-- AND Z.DBNAME = 'DSNDB06'
-- AND Z.TYPE = 'G'
-- AND Z.CREATEDTS > (CURRENT TIMESTAMP - 999 DAYS)
ORDER BY Z.DBNAME, Z.NAME
;

Modern SQL - use COL groups to start in middle

Modern SQL makes it easier to read And

understand WHEN you want to start in the

middle of a result set!

Here I use the IBM provided EMP table which most of us already have installed in our
Db2.
I query the whole EMP and order it. The first result is the beginning
The second two queries want to start in the middle of that result. They both produce
the same result. The second query is easier (to me) to read!

Modern SQL – HOW to code conditions on LEFT OUTER table

• When using LEFT
OUTER join, it can get
complicated if the
LEFT OUTER join table
has conditions in the
WHERE clause.

• If you want them to
be always true, then
the join essentially
turns into INNER JOIN

• If you want the
condition to only be
evaluated if the
OUTER table row
qualifies then it is
tricky

-- SELECT FROM TABLE TABLEP FOR SOME
-- CONDITION ON COLB
-- >> WHERE P.COLB MUST BE IN SOME LIST
-- LEFT OUTER JOIN TO SHOW COL_CD1 DESCRIPTION
-- FROM CHILD TABLE TCHILD. BUT WE WANT DESC
--- WHEN LANG_CD = E
--- > SOMETIMES CHILD TABLE IS MISSING ROWS
--- > WE DO LEFT OUTER JOIN TO STILL SEE ROWS
--- > FROM MAIN TABLEP
--
-- THIS SQL MAY NOT WORK AS YOU DESIRE
SELECT P.COLA, P.COLB, P.COL_CD1
, C.CDDESC
FROM TABLEP P
LEFT OUTER JOIN TABLEC C
 ON P.COL_CD1 = C.COL_CD1
WHERE 1=1
 AND P.COLB IN (1,2,3)
 AND C.COL_LANG_CD ='E'
;

-- THIS COMPLICATED SQL SHOULD
-- WORK AS DESIRED
SELECT P.COLA, P.COLB, P.COL_CD1
, C.CDDESC
FROM TABLEP P
LEFT OUTER JOIN TABLEC C
 ON P.COL_CD1 = C.COL_CD1
WHERE 1=1
 AND P.COLB IN (1,2,3)
 AND (C.COL_LANG_CD ='E'
 OR C.COL_LANG_CD IS NULL
)
;

-- BETTER!! THE LEFT OUTER JOIN TABLE
-- CONDITIONS ARE IN ON CLAUSE,
-- NOT THE WHERE !!
SELECT P.COLA, P.COLB, P.COL_CD1
, C.CDDESC
FROM TABLEP P
LEFT OUTER JOIN TABLEC C
 ON P.COL_CD1 = C.COL_CD1
 AND C.COL_LANG_CD ='E'
WHERE 1=1
 AND P.COLB IN (1,2,3)
;

If you code a WHERE equal condition then it must be true. But if the outer join table
has no row then the value is essentially null and not that desired value
So if you keep the condition in the WHERE clause you have to add a OR NULL
check.
Better is to put the condition the JOIN clause

20

Modern SQL – grouping sets

• Use of GROUP BY provides a quick way
to do things like SUM many rows. We
all use it all the time

• Use of GROUP BY GROUPING SETS
provides a way to group by multiple
sets of columns all at once. It basically
provides a super quick way to produce
easy to read reports with just SQL!

• > I often use COALESCE to convert
grouping columns from NULL to
something pretty to read

SELECT COALESCE(DBNAME,'-ALL') AS DBNAME
, SUM(SPACE) AS SPACE
FROM SYSIBM.SYSTABLESPACESTATS
WHERE 1=1
GROUP BY GROUPING SETS ((DBNAME),())
ORDER BY SPACE DESC
;

 DBNAME SPACE
 -------- ----------
 -ALL 2147037664
 DIL01P 535818992
 DYR01P 527364512
 DIL04P 177562720
 DSNDB07 166626432
 DCL01P 131756736
 DYB01P 122052960

Thanks to presentations from Tony Andrews and David Simpsons from years ago to
remind me OF THE POWER OF GROUPING SETS

21

Opinion – use WHERE 1=1 in ad-hoc SQL

• I often use Data Studio to build my ad-hoc SQL.
• First, it has intellisense for popping up

table-names and column-names. Very useful.
• Second, Data Studio has super easy function to

change select text to SQL comment and add
dash-dash (or undo)

• I am now in the habit of beginning my ad-hoc
SQL with WHERE 1=1.

• This allows me to build a list of AND conditions
and easily go back and forth and comment them
out and put them back in. Otherwise, when I
want to comment out the first condition after
the WHERE, it annoys me and gets complicated.

-- example dynamic ad-hoc SQL I might build
-- to look at Db2 catalog
SELECT Z.DBNAME, Z.NAME AS TSNAME
, Z.TYPE AS TSTYPE
, T.CREATOR AS TCREATOR, T.NAME AS TNAME
, T.TYPE AS TTYPE
FROM SYSIBM.SYSTABLESPACE Z
LEFT OUTER JOIN SYSIBM.SYSTABLES T
 ON (Z.DBNAME,Z.NAME) = (T.DBNAME,T.TSNAME)
 AND T.TYPE = 'T'
WHERE 1=1
 AND Z.DBNAME = 'DSN8D12A'
-- AND Z.DBNAME = 'DSNDB06'
-- AND Z.TYPE = 'G'
-- AND Z.CREATEDTS > (CURRENT TIMESTAMP - 999
DAYS)
ORDER BY Z.DBNAME, Z.NAME
;

The example SQL is now very easy to comment out any of WHERE AND conditions

22

Best Practice – no WHERE 1=1 in applications

• It is considered best practice to not have WHERE 1=1 in any
application SQL. This includes both dynamic SQL and static SQL

• Apparently, there is a common(?) hacking technique (SQL injection) to
look for network traffic with those characters and then somehow
infer something because it is probably SQL.

23

Modern SQL – select all COLS from one table
> and some COLS from another (easier today!)

• If you have multiple tables in your
FROM clause, with “SELECT *” you
previously got all columns from all
tables

• Now you can select all columns from
one table and a few specific columns
from another

• I find this useful when doing ad-hoc SQL
and I want add a new join to the SQL. I
can quickly SELECT all the columns from
the new table to review and think what
specific columns I really want.

SELECT A.COL1, A.COL2, B.*
FROM TABLEA A
INNER JOIN TABLEB B
 ON (A.COL1 = B.COL1)
ORDER BY A.COL1
;

I ONLY LEARNED THIS TRIVIA IN THE LAST FEW YEARS

24

Opinion – application compatibility is hard to spell

• I constantly mis-spell compatibility. And it is so long to type.

• Because I am keen, I check the application compatibility of my tools
all the time (Data Studio, DSNTEP2, SPUFI, etc).

• I made an RFE to IBM to make an alternative special register name

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1194

• This is minor… but why not make Db2 a bit easier…

https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1194

Modern SQL – Common Table Expressions (1|2)

• Common Table Expression (CTE) are powerful SQL constructs that
should be moved more often. In my opinion they can help break
apart complicated SQL requirements into smaller chunks that are
easier to read and understand.

• is it harder for the optimizer to figure out a good access path. Sometimes.
But usually not. Deal with performance as necessary!

• How does it work? IBM reference is good

• https://www.ibm.com/docs/en/db2-for-zos/12?topic=statement-common-ta
ble-expression

• There are good explanations… but just use them!

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statement-common-table-express
ion

26

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statement-common-table-expression
https://www.ibm.com/docs/en/db2-for-zos/12?topic=statement-common-table-expression

Modern SQL – Common Table Expressions (2|2)
WITH CTE_DB AS (
SELECT NAME AS DBNAME
FROM SYSIBM.SYSDATABASE
WHERE 1=1
 AND NAME NOT LIKE 'DSN%' -- IGNORE
 AND NAME NOT LIKE 'PTDB%' -- IGNORE
)
, CTE_RTS_TS AS (
SELECT DBNAME, 'TS' AS OBJ_TYPE
, SUM(SPACE) AS SPACE
FROM SYSIBM.SYSTABLESPACESTATS
WHERE 1=1
 AND DBNAME IN (SELECT DBNAME FROM
CTE_DB)
GROUP BY DBNAME
)
, CTE_RTS_IX AS (
SELECT DBNAME, 'IX' AS OBJ_TYPE
, SUM(SPACE) AS SPACE
FROM SYSIBM.SYSINDEXSPACESTATS
WHERE 1=1
 AND DBNAME IN (SELECT DBNAME FROM
CTE_DB)
GROUP BY DBNAME
)

, CTE_F AS (
SELECT COALESCE(Z.DBNAME,X.DBNAME) AS DBNAME
, COALESCE(Z.SPACE,0) AS TS_SPACE
, COALESCE(X.SPACE,0) AS IX_SPACE
, COALESCE(Z.SPACE,0)
 +COALESCE(X.SPACE,0) AS ALL_SPACE
FROM CTE_RTS_TS Z
LEFT OUTER JOIN CTE_RTS_IX X
 ON (Z.DBNAME = X.DBNAME)
)
--SELECT * FROM CTE_F; -- UNCOMMENT TO SEE
CTE_F
SELECT COALESCE(DBNAME,'-ALL') AS DBNAME
, SUM(TS_SPACE)/1024 AS TS_SPACE_MB
, SUM(IX_SPACE)/1024 AS IX_SPACE_MB
, SUM(ALL_SPACE)/1024 AS ALL_SPACE_MB
FROM CTE_F
GROUP BY GROUPING SETS ((DBNAME),())
ORDER BY ALL_SPACE_MB DESC
;

 DBNAME TS_SPACE_MB IX_SPACE_MB ALL_SPACE_MB
 -------- ----------- ----------- ------------
 -ALL 1905292 1321737 3227029
 DYR01P 515004 559251 1074255
 DIL01P 523263 189371 712635
 DYB01P 119192 163476 282668
 DIL04P 173401 64985 238386
 DJC01P 98064 122092 220157
 DCL01P 128668 54434 183103
 DYD01P 90056 505 90562
 DDB01P 59104 26476 85581
 DCL04P 53501 26396 79897
 DYC01P 34623 16507 51130

The report requirement is
complicated (and useful).
The SQL looks scary. But
CTE makes each section of
the SQL easy to
understand! (IMHO)

Here is a SQL which produces a fun-to-me report on db allocated space size
I use many CTE to break up this big report requirement into small chunks. Each
chunk is easy to understand

Build a list DBNAME to look at
Use RTS to SUM SPACE in that DB for TS and IX
Join the two CTE together to get space unified by dbname.
Use coalesce to turn nulls to appropriate value
Do a final grouping by grouping sets on the final cte, cte_f, to get the sums for all!

I could have included tracks -> I like knowing tracks because of DSLIST

IMHO – in my humble opinion

27

Modern SQL – LISTAGG

• Db2 V12 FL501 introduced LISTAGG function. I
think it is fun.

• It allows one to turn a result set sideways!
• Link: LISTAGG - IBM Documentation
• LINK TO IDUG CONTENT BLOG: SQLTricks - Part 2

LISTAGG Function (idug.org)

• Basically, use LISTAGG with GROUPBY to report on
column(s) and put other columns sideways as a list.

• It allows one to make reports using SQL

• Select indexnames and index columns as the list

• Select workdept and employee lastnames as the list

SELECT WORKDEPT,
 LISTAGG(ALL LASTNAME, ', ')
 WITHIN GROUP(ORDER BY LASTNAME)
 AS EMPLOYEES
 FROM EMP
 GROUP BY WORKDEPT;

LISTAGG - IBM Documentation
SQLTricks - Part 2 LISTAGG Function (idug.org)

28

https://www.ibm.com/docs/en/db2-for-zos/12?topic=functions-listagg
https://www.idug.org/blogs/tony-andrews1/2020/11/12/listagg
https://www.idug.org/blogs/tony-andrews1/2020/11/12/listagg
https://www.ibm.com/docs/en/db2-for-zos/12?topic=functions-listagg
https://www.idug.org/blogs/tony-andrews1/2020/11/12/listagg

Best Practice – ALWAYS use ORDER BY

•If there is any chance that your SELECT result may return more then 1 rows, then you should always
specify ORDER BY
•Sure, today, by coincidence, you may always get the result in the desired order.
•But the fact that result happens to usually/always return the desired order TODAY is not a guarantee
for the future!
•Why could order of a result change?

1. Indexes could be changed/added/removed/deleted and then the optimizer picks a new access path and the result is
returned in a different order.

2. The static statistics could change significantly in the future. Again, this may influence the optimizer to pick a new
access path.

3. maybe static STATISTICS changed or maybe Db2 optimizer changes to be more “clever”.

If you do not have have ORDER BY then explain to me why not.
> And document it. Because it is not normal.

• Why do I care about this? As you might expect. Once (a few years ago) we had
some obscure SQL that returned a result. No order by on the SELECT.
Coincidently, it always returned in desired order (for many many years). After a
Db2 release and some rebinds, the access path changed. The result might have
been returned slightly faster, but in a new more random order and the application
updated things out of sequence. A bit of a disaster

29

Opinion – never use DISTINCT

• Never use DISTINCT. I have rarely met a DISTINCT that I liked!

• SELECT DISTINCT causes Db2 to SORT the result set to remove duplicate rows in
the result set.

• You may as well do a GROUP BY and accomplish the same final result set. GROUP
BY does essentially the same SORT as DISTINCT. And then you can get the bonus
of some classic GROUP BY functions like MAX(colx) or COUNT(*)

• My problem when I see SELECT DISTINCT is that the SQL developer is getting
results with duplicate rows, and they do not understand why and they use
DISTINCT to remove them. But better to understand why! For example, they
forget to look at rows with a status code of inactive. Or they include some other
expired or past due effective date rows from the source. IF they investigate
properly, they can change the SQL properly and not use DISTINCT.

Modern SQL – UNION and UNION ALL

• When we have two result sets (two SELECT) that we want to
concatenate together we have the choice of UNION and UNION ALL

• There is too much usage of UNION instead of UNION ALL

• UNION will combine the two sets and then sort and remove
duplicates

• UNION ALL will combine the sets and be done. Duplicate rows could
remain. Perhaps we want duplicate rows. Or perhaps we know
duplicates are impossible > so we use UNION ALL and avoid that extra
SORT to look for duplicates.

Modern SQL – UNION, EXCEPT, INTERSECT

• We all know UNION. But there are other SET operations! Did you forget?
• EXCEPT will take the top/first result set and “subtract” the identical rows

from the second result set
• INTERSECT will take the top/first result and return only the rows that are

common with the second result set.
• These additional SET operations are powerful ways to produce useful info

or reports just with SQL without additional reporting languages
• https://www.ibm.com/docs/en/db2-for-zos/12?topic=queries-fullselect
• I used EXCEPT in an interesting case. I built a result set containing all

column names and types of tables in schema A. Another result had the
same thing but for schema B. I then used EXCEPT and the result was the
empty set! This quickly confirmed the two sets were identical.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=queries-fullselect

Modern SQL – use SQL to build more SQL or commands (1|3)

• In the past, I would need to extract data from Db2 tables (catalog or
application) and then use other tools to format the data to look like
specific input to a subsequent step in my process.

• The subsequent step could be Db2 commands OR more SQL or input
to some application program

• Now I realize it is not so hard to use SQL itself to extract the data and
format it immediately. A generous helping of CTE and CHAR functions
and concatenation can together produce a final result set that can
meet most subsequent needs!

Modern SQL – use SQL to build more SQL or commands (2|3)

• For example, I had a
need to BIND all recently
used packages from one
collection into another
collection. I wanted to
use the same BIND
parameter values from
the original collection.
The result set has to be a
simple 80 CHAR wide
field so that I could use
DSNTIAUL with the
SELECT and send the 80
LRECL dataset to the
subsequent step that
processed the Db2 BIND
commands

with cte_a as (
select COLLID, NAME, RELBOUND
, OPTHINT, OWNER, CREATOR,
QUALIFIER, RELEASE
, VALID, OPERATIVE
, REOPTVAR
, LASTUSED
from SYSIBM.SYSPACKAGE
where 1=1
 and COLLID = 'PCLD1'
 AND LASTUSED > (CURRENT DATE - 26
MONTHS)
 AND OPTHINT = ' '
ORDER BY COLLID, NAME
FETCH FIRST 999 ROWS ONLY
)

, CTE_F AS (
select ' BIND PACKAGE(NEW_RELEASE_COLL)
MEM('
 ||STRIP(NAME)||') -' AS BIND_TXT
, COLLID, NAME, 10 AS LINE_NBR
from cte_a
UNION ALL
select ' QUAL('||STRIP(QUALIFIER)||')
OWNER('
 ||STRIP(OWNER)||') -' AS BIND_TXT
, COLLID, NAME, 20 AS LINE_NBR
from cte_a
UNION ALL
select ' VALID(B) EXPL(Y) ACTION(REPLACE)'
AS BIND_TXT
, COLLID, NAME, 30 AS LINE_NBR
from cte_a
)
SELECT CHAR(BIND_TXT,80) AS BIND_TXT80
FROM CTE_F
ORDER BY COLLID, NAME, LINE_NBR
;

Modern SQL – use SQL to build more SQL or commands (3|3)

• As you can see, the previous
SQL can produce a
nice-looking CHAR 80 wide
result set that is easily fed into
the step for Db2 batch
commands

 BIND_TXT80

BIND PACKAGE(NEW_RELEASE_COLL) MEM(CFE0031) -
 QUAL(DBCCLD1) OWNER(DBCCLD1) -
 VALID(B) EXPL(Y) ACTION(REPLACE)
 BIND PACKAGE(NEW_RELEASE_COLL) MEM(CFE0100) -
 QUAL(DBCCLD1) OWNER(DBCCLD1) -
 VALID(B) EXPL(Y) ACTION(REPLACE)
 BIND PACKAGE(NEW_RELEASE_COLL) MEM(CFE0142) -
 QUAL(DBCCLD1) OWNER(DBCCLD1) -
 VALID(B) EXPL(Y) ACTION(REPLACE)
 BIND PACKAGE(NEW_RELEASE_COLL) MEM(CFE0151) -
 QUAL(DBCCLD1) OWNER(DBCCLD1) -
 VALID(B) EXPL(Y) ACTION(REPLACE)
 BIND PACKAGE(NEW_RELEASE_COLL) MEM(CFE0152) -

Modern SQL – RID function

• The RID function returns the location of a row in a table in RID
(BIGING) format.

• SQLCODE -803 failed insert duplicate because row already exists – reports
the RID of the row already inside the table

• Db2 Utilities such as CHECK DATA and LOAD DATA report conflicting rows
inside the table with the RID of row.

• Now with RID function, you can confirm and double check what is
at that RID location. Then you can compare with your INSERT or
utility and understand really what went wrong!

• The RID points to a record location inside the table(space). After a
REORG or INS/UPD/DEL, the row at that RID location could move.
The RID does not belong to a row!

• The annoying thing is that Db2 -803 and utilities report RID in HEX
and RID function requires BIGINT. Windows calculator is an easy
way to convert. Other methods exist too. Or vote for my RFE:
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455

-- LOOK AT EACH ROW
-- SHOW EACH RID
SELECT RID(E) AS RID, E.*
 FROM EMP E
ORDER BY 1
;
-- KNOWING A RID(AS
BIGINT)
-- , LOOK AT THAT ROW
SELECT E.*
 FROM EMP E
WHERE 1=1
 AND RID(E) = 4883
;

https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455

36

https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455

Modern SQL – temporary tables

• First, temporary tables are NOT temporal tables!

• Temporary tables are declared or created (in advance, by a dba).
They are private and are used during the life of your application
activity.

• Both have their place and can allow SQL alone to produce complex
reports or store results for (slightly) later.

• IDUG content has a blog on the topic:
https://www.idug.org/blogs/brian-laube1/2023/04/23/temporary-tables-and-painful-lesson

https://www.idug.org/blogs/brian-laube1/2023/04/23/temporary-tables-and-painful-lesson

Modern SQL – temporal tables (1|2)

• First, temporal tables are not temporary tables!

• Temporal tables allow you to query the table and see the result as of a point in time in
the past. Powerful!

• Basically, you create a duplicate “history” table of the original and associate the history
table with the original. All DEL/UPD are moved to the history before they occur in the
original. You can query the history table directly or the parent/original and specify
what time.

• I use temporal tables on some key application tables about clients. Now myself or
support team can query the history table and EASILY understand changes over time.
Especially, who set colx to value Y? When? And what program? Easier than log
analysis!

• See IDUG Content blog on this topic:
• https://www.idug.org/blogs/brian-laube1/2022/03/15/travel-through-time-with-db2-sq

https://www.idug.org/blogs/brian-laube1/2022/03/15/travel-through-time-with-db2-sq

Modern SQL – temporal tables (2|2)

• A universal example of temporal tables are the REAL-TIME-STATISTICS
tables of SYSTABLESPACESTATS and SYSINDEXSPACESTATS

• IBM has made it “easy” to turn them into temporal tables. They provide
the DDL and all the instructions and the JCL. You just have to think
about potential purge strategy on the history table.

> The result is very useful to review the history of table change (growth)
over time!
• https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-systablespacestats

• https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-sysindexspacestats

• As an exercise for myself, one day I may figure out how to summarize
the history.. Into daily chunks into another table? Or just within the
history table itself. So then I can purge old history but keep it longer

https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-systablespacestats
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-sysindexspacestats

39

https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-systablespacestats
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-sysindexspacestats
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-systablespacestats
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-sysindexspacestats

Modern SQL – find lost EXPLAIN from
package

•Have you lost your SQL access path from plan_table (or maybe you forgot to create it in
the first place)
•How can you confirm your access path actually being used by your package today?

•You can (since v10) use EXPLAIN PACKAGE to extract the access path from the package
itself and stuff the explanation into the plan_table.
•And once it is in the plan_table again, you can use Visual Explain
•OR you might want the plan_table to tweak it and use it with OPTHINTS in another
schema! (to recreate the problematic SQL)

•https://www.idug.org/blogs/brian-laube1/2023/04/23/explain-package-to-recreate-missing-plan-table

https://www.idug.org/blogs/brian-laube1/2023/04/23/explain-package-to-recreate-missing-plan-table

Modern SQL – MERGE statement

• Do not forget that SQL MERGE exists.
• SQL MERGE lets you combine two results/tables.
• The target can be inserted or updated or even deleted based upon the data

in the second table!
• The classic initial example is that you can set up a table that contains data

you want to change in the target. The MERGE can process the whole table
and when it matches the target key, the MERGE does the update, if the key
is not found then the MERGE does INSERT.

• This MERGE method allows one to avoid the classic problem of wanting to
update or insert into a target but you don’t know if the row already exists.
In the past, one would try INSERT and if it failed then do UPDATE (or
opposite). Or do SELECT to check first and then do INSERT/UPDATE. All
required multiple SQL. Now MERGE is one statement

Best Practice – SQL Formatting (1|2)

• Shops should have SQL standards. At minimum, everyone has their
personal preferences for how SQL should look. When you get ugly
SQL, you should have a way to quickly reformat so it is “easier” to
look at.

• Most “database exploration” tools like IBM Data Studio, Dbeaver,
DBVisualizer, AQT and even VSCODE with the extension for Db2 Z,
they all have SQL reformatting capability. Use it

• Minor digression. Dbeaver is an open source “database exploration
tool”. Like Data Studio and DBvisualizer and others. But it is free and
open source and I think I like it. Easy install! (as opposed to Data
Studio)

https://extendsclass.com/sql-formatter.html
https://www.freeformatter.com/sql-formatter.html#ad-output

42

https://extendsclass.com/sql-formatter.html
https://www.freeformatter.com/sql-formatter.html#ad-output

Best Practice – SQL Formatting (2|2)

There are also a gazillion websites for programmers that will “format” SQL for you.
Including:
•https://extendsclass.com/sql-formatter.html
•https://www.freeformatter.com/sql-formatter.html#ad-output

The problem with all existing formatting tools and and websites, None of
them follow all MY standards. And they probably do not follow your
preferences.

https://extendsclass.com/sql-formatter.html
https://www.freeformatter.com/sql-formatter.html#ad-output

43

https://extendsclass.com/sql-formatter.html
https://www.freeformatter.com/sql-formatter.html#ad-output
https://extendsclass.com/sql-formatter.html
https://www.freeformatter.com/sql-formatter.html#ad-output

IBM Cloud and the free Db2 (lite)

IBM cloud provides a full and free Db2 LUW in their IBM Cloud!

It is the very latest Version 11.5. Fully functional

The “lite” plan from IBM Cloud is free! Great price.

> It is limited to one userid and 200GB of data.

> the “lite” plan is only available from IBM Cloud of Dallas or London

The benefit? You can play with Db2 and experiment yourself at home and practice your
SQL!

Dan Luksetich provides a quick overview on how to set up this Db2!

https://www.db2expert.com/db2expert/db2-lite-on-cloud/

The IBM Content Committee has an article (Fall 2023) by myself. My article has painfully
excessive details and screenshots on how to set up this Db2!

https://www.db2expert.com/db2expert/db2-lite-on-cloud/

Best Practice – Requests for Enhancements (RFE)

• RFE are how we ask IBM to enhance Db2 (or other software).

• https://ideas.ibm.com/

• RFE are not for reporting bugs! RFE are for serious suggestions. Be
reasonable though!

• Join and review IBM RFE website today. Vote for ideas that you like

https://ideas.ibm.com/

45

https://ideas.ibm.com/

Best Practices – example RFE (please vote)

• Put useful statistics about index compression in Db2 catalog

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1065

• Declare and INSERT into DGTT in one statement (like every other RDBMS in the world)

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-940

• Redirected recovery – allow schema comparison with no recovery into target

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1402

• Redirected recovery – eliminate need for annoying REPAIR CATALOG

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1464

• Allow LISTAGG to always work with ORDER BY

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1031

• New function HEX2BIGINT to allow easier investigation into INSERT SQLCODE -803 and
utilities who report RID in HEX. RID function accepts BIGINT

• https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455

Put useful statistics about index compression in Db2 catalog
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1065
Declare and INSERT into DGTT in one statement (like every other technology
in the world)
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-940
Redirected recovery – allow schema comparison with no recovery into target
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1402
Redirected recovery – eliminate need for annoying REPAIR CATALOG
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1464
Allow LISTAGG to always work with ORDER BY
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1031
New function HEX2BIGINT to allow easier investigation into INSERT
SQLCODE -803 and utilities who report RID in HEX. RID function accepts
BIGINT
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455

46

https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1065
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-940
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1402
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1464
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1031
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1065
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-940
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1402
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1464
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1031
https://ibm-data-and-ai.ideas.ibm.com/ideas/DB24ZOS-I-1455

Yes. I own the domain “spufi.ca”. I find it amusing.

Please fill out your session evaluation!

Session Code: G03

Speaker: Brian Laube

Company: Manulife Financial

Email Address:

> brian.laube @manulife.ca

> brian@spufi.ca or db2@spufi.ca

