
© 2023 IBM Corporation

Bringing Db2 for z/OS-Based
Applications Into the Modern Age

Central Canada Db2 Users Group &
IDUG Data Tech Summit

September 19, 2023

Robert Catterall, IBM
Principal Db2 for z/OS Technical Specialist

Agenda

2

• Choosing the right interface – SQL or REST
• Leveraging Db2 for z/OS application-enabling functionality
• Putting SQL procedure language to work, and doing that in an agile way
• Synchronous versus asynchronous processing

© 2023 IBM Corporation

Choosing the right interface – SQL or REST

3
© 2023 IBM Corporation 3

A level-set on these two interfaces

4

• Until recently, only application interface to Db2 for z/OS was SQL interface
o If an application were going to access Db2 data, it would issue SQL statements
o Even if “table-touching” SQL statements packaged in a Db2 stored procedure,

that stored procedure would be invoked by way of a SQL statement: CALL

• Db2 12 for z/OS introduced the REST interface to Db2 – when using that
interface, a Db2-accessing program does not issue SQL statements
o Application issues REST requests that invoke server-side static SQL statements
o If stored procedures involved, difference is means of invoking stored procedures
- SQL interface: SQL CALL – programmer knows server is relational DBMS
- REST interface: REST request – nature of request-serving system completely

abstracted from developer’s perspective

© 2023 IBM Corporation

More on the REST interface to Db2 for z/OS

5

• Enables creation of REST service from single static SQL statement (SELECT,
INSERT, UPDATE, DELETE, TRUNCATE or CALL [of stored procedure])
• It is an extension of the Db2 distributed data facility (DDF)

o One implication of that: up to 60% of CPU cost of executing SQL statements
invoked via REST interface offloaded to lower-cost zIIP engines on IBM Z server

• Secure: request must have ID and password (or certificate), and ID must
have EXECUTE privilege on Db2 package associated with REST service
• Highly scalable, highly performant
• A Db2 REST service can be created with BIND SERVICE command, with

Db2-provided DB2ServiceManager REST service, or with IBM z/OS Connect

© 2023 IBM Corporation

A Db2 REST request round trip…

6© 2023 IBM Corporation

POST http://mybank.com:4711/services/ACCOUNTS/getBalance
Body: { “ID”: 123456789 }

REST client

DDF Db2 for z/OS
(database services
address space)HTTP and

JSON parsing
SQL

execution

SELECT C.FIRSTNAME,
C.LASTNAME, A.BALANCE,
A.LIMIT
FROM ACCOUNTS A,
CUSTOMERS C
WHERE A.ID = ?
AND A.CUSTNO = C.CUSTNO

Body:
{

“FIRSTNAME” : “John”,
“LASTNAME” : “Smith”,
“BALANCE” : 1982.42,
“LIMIT” : 3000.00

}

HTTP + JSON

Security checks

Thread management

REST call (ACCOUNTS
is collection name,
getBalance is service
name)

HTTP response in
JSON format
(JavaScript Object
Notation)

SQL
statement (in
form of a
package)

SQL vs. REST applies mainly to client-server apps

7

• For “local to Db2” applications (e.g., JES batch jobs, CICS or IMS
transactions), SQL interface will usually be the best choice
• For applications that will access Db2 for z/OS via DDF over TCP/IP

connections, REST versus SQL is an important decision
o Note: in client-server scenario, client using SQL interface is a DRDA requester

• In deciding between SQL and REST for new client-server application, there
are several things to consider, including client-side programming language
o IBM has drivers (e.g., JDBC, ODBC, ADO.NET) that support SQL access to Db2 for

z/OS from programs written in variety of languages (e.g., Java, C#, Perl, Python)
o What if you want to use a language for which there is not a Db2 SQL driver?
- If program coded in that language can issue REST request, it can access Db2

© 2023 IBM Corporation

Other SQL vs. REST considerations

8

• Even if the IBM Data Server Driver supports language that will be used on
client side, is it feasible to install that driver on client-side app servers?
o Use of REST interface to Db2 requires no client-side driver

• If desirable or necessary for client-side program to dynamically construct
a SQL statement and send it to Db2, SQL interface would make sense
o Example: build a SELECT based on combination of screen fields filled by user

• What about control over scope of a Db2 unit of work (UOW)?
o With SQL interface, client application determines scope of UOW by issuing a

commit – if that is important for application, SQL interface could be best choice
o With REST interface, each REST request is a separate UOW
- For multiple SQL statements with one REST request, use stored procedure

© 2023 IBM Corporation

Db2’s REST interface and z/OS Connect

9

• A client application can directly access Db2’s REST interface; alternatively,
Db2’s REST interface can be accessed using IBM z/OS Connect
o In that case, Db2 is a REST provider to z/OS Connect

• What z/OS Connect provides:
o GUI tooling makes it easier to create REST services from Db2 SQL statements
o Automatically-generated Swagger descriptions of Db2 REST services (industry-

standard service description specification – helpful for service discovery)
o Flexibility in coding Db2-targeted REST request: use any HTTP verb (e.g., GET,

PUT) – when Db2’s REST interface accessed directly, POST form required
o Flexibility in formatting JSON document that is output of Db2 REST service

• z/OS Connect also enables outbound REST requests (e.g., from COBOL)
© 2023 IBM Corporation

Leveraging Db2 for z/OS application-
enabling functionality

10
© 2023 IBM Corporation 10

A twofold objective

11

1. If a Db2 capability can provide functionality that an application needs,
that’s functionality developers don’t have to provide with program code

o Accelerates application development, reduces application maintenance

2. If particular capability can be provided either via application code or Db2
feature, highly likely that Db2 feature will provide the best performance

o Pushing functionality into the database layer boosts efficiency

• The next few slides highlight some of the more important application-
enabling features of Db2 for z/OS – consider whether they would be helpful
for your application requirements

Temporal data support

12

• Comes in 2 “flavors” – one is system-time temporal (aka row versioning)
o How that works: suppose that table T1 has been enabled for row versioning
o If row in T1 is updated or deleted, Db2 inserts “before” image of row (i.e., row as

it was prior to update or delete) in “history” table associated with T1
- Db2 also updates timestamp column values in history table row, showing when

row became “current” (i.e., when it was inserted in T1, or when it was changed
via UPDATE) and when it stopped being current (when deleted or updated)

o What this means:
- Using temporal query syntax (easy to code), an application can see what the

current version of a row looked like at a prior point in time, or how a row
changed during a specified period of time (and who changed the row)

© 2023 IBM Corporation

Second “flavor” of temporal data support

13

• Business-time temporal
• Allows future data changes (such as product price changes) to be inserted

into a table, along with an indication of when a change will go into effect
and how long it will be in effect (if not indefinitely)
o Adding these future changes to a table does not impact applications that, by

default, are accessing rows that are currently in effect

• Advantages of future data changes being added to a table beforehand:
o Ensures that future changes will go into effect when they are supposed to
o Allows (for example) business analysts to submit temporal queries that will

show what revenue and profits would be with prices that will be in effect at a
future time

© 2023 IBM Corporation

Storing XML documents in Db2 table columns

14© 2023 IBM Corporation

• A column of a Db2 for z/OS table can have the XML data type
• The XML data type gives Db2 awareness of XML documents – structure of

documents is understood, and supporting functionality is available:
o Schema validation
o Ability to retrieve and modify XML data using XQuery expressions
o Ability to retrieve data in XML documents in tabular form
o Ability to define indexes on elements of XML documents to speed data retrieval
o Ability to transform an XML document with an XSL style sheet
o And more…

Db2 transparent archiving

15

• Suppose table T1 holds 20 years of transaction data, and 95% of all
queries target rows inserted within the past 3 months (the “popular” rows)
• If T1’s clustering key not continuously-ascending, and if inserts outnumber

deletes, popular rows are separated by ever more “old and cold” rows
o Result: performance degradation for access to popular rows

• With Db2 transparent archiving, T1 holds only most recent 3 months of
data (for example) – other rows are in archive table associated with T1
o Result: better performance for retrieval of popular rows
o Query coding unaffected – Db2 makes T1 and archive table appear to be 1 table

Before transparent
archiving

After transparent
archiving Newer, more

“popular” rows

Older rows, less
frequently retrieved© 2023 IBM Corporation

Result set pagination

16

• Makes it easier to write a program that returns parts of a query result set
in “pages” as user scrolls through
• Enabled via OFFSET clause for SELECT, introduced with Db2 12 –

example:
o First page of 20 rows: OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY
o Second page of 20 rows: OFFSET 20 ROWS FETCH FIRST 20 ROWS ONLY

• And, both OFFSET and FETCH FIRST values can be parameter markers or
host variables – you could decide that after first 3 pages of 20 rows each
have been returned, subsequent pages will have 30 rows apiece
o Example: OFFSET ? ROWS FETCH FIRST ? ROWS ONLY

© 2023 IBM Corporation

“Piece-wise” DELETE

17

• Coding SQL for removing a large number of rows from a table hard
o DELETE FROM T1 WHERE C1 > 7

o Problem: if T1 has 500 million rows and 50 million of them have a value greater
than 7 in column C1, execution of statement above will acquire a ton of locks

• Db2 “piece-wise” DELETE functionality makes it easy to code SQL that will
remove a large number of rows from a table in bite-sized units of work
o Based on including FETCH FIRST clause in DELETE statement - for example:
o DELETE FROM T1 WHERE C1 > 7 FETCH FIRST 500 ROWS ONLY;

o COMMIT;

o DELETE FROM T1 WHERE C1 > 7 FETCH FIRST 500 ROWS ONLY;

o COMMIT;

Delete first chunk of 500 rows

Delete second chunk of 500 rows

© 2023 IBM Corporation

Newer built-in Db2 functions

18

• PERCENTILE_CONT (column values treated as points in continuous
distribution) and PERCENTILE_DISC (column values treated as discrete
data values) make it easy to answer questions like this one:
o “What is the 90th percentile for salaries of people in department A02?”

• HASH_MD5 lets you get an MD5 hash of a value prior to (for example)
inserting it into a table (related functions: HASH_CRC32, HASH_SHA1,
HASH_SHA256)
• LISTAGG makes it easy to have a query result set column that is a comma-

separated list of values (e.g., last names of employees in each
department)
o And, separator need not be a comma – can be any character string constant

© 2023 IBM Corporation

Db2 global variables

19

• Db2 global variable: created by a DBA, versus being declared in a program
o After creating a global variable, DBA permits IDs (e.g., of applications) to use it

• When application program references global variable, it gets its own
instance of the global variable (instance exists for a Db2 session)
• A global variable makes it easy to get a value from a Db2 table and pass it

to a subsequent SQL statement in the Db2 session
o When second SQL statement references global variable (e.g., in query predicate),

it is effectively referencing value placed in global variable by first SQL statement

• Global variables also make it easy for program to receive a value from Db2
advanced trigger (trigger that includes a SQL procedure language routine)
o Trigger, when fired, places value in global variable, and when control returns to

trigger-firing program it can see and use the value in the global variable
© 2023 IBM Corporation

http://robertsdb2blog.blogspot.com/2018/11/db2-for-zos-global-variables-what-is.html

Db2 arrays

20

• A Db2 array is a Db2 user-defined data type created by a DBA – once
created, it can be used in SQL statements
o Db2 arrays can be useful for passing a set of values to a called stored procedure
- Stored procedure must be native SQL procedure (written in SQL PL), caller

must be either Java or .NET DRDA requester or another SQL PL routine
o Also: a Db2 global variable can have an array data type
- Pass set of values from one SQL statement to another within Db2 session

• Two types of Db2 array:
o Ordinary (logically, like stack of individual values)
o Associative (stack of pairs of values – each element has associated “index” value)

• Db2 provides built-in functions to populate and otherwise work with arrays
© 2023 IBM Corporation

Application-specific lock timeout limit

21

• A recent enhancement, provided by Db2 13 for z/OS
• New Db2 special register, CURRENT LOCK TIMEOUT, can be set by

program (like global variable, special register is relevant to a Db2 session)
• Potential use cases (assume lock timeout value for system is 30 seconds):

o For a mobile app that accesses Db2, development team might want 5-second
lock timeout limit – if reached, send “please try again” message to user
- Preferable to having user look at spinning colored wheel for up to 30 seconds

o If a certain mission-critical Db2 batch application runs for three hours at month-
end, development team might want a 10-minute lock timeout limit
- Might be preferable to situation in which job has been running for 2 hours and

then gets a Db2 lock timeout error because it had to wait 30 seconds for a lock

© 2023 IBM Corporation

http://robertsdb2blog.blogspot.com/2018/11/db2-for-zos-global-variables-what-is.html

AI for data analysis – Db2 SQL Data Insights (SQL DI)

22© 2023 IBM Corporation

• New feature of Db2 13 for z/OS – advanced machine learning technology
incorporated with the Db2 database “engine”
• No data scientist required to activate and utilize the feature
• Three new associated built-in Db2 functions:

o AI_SIMILARITY
o AI_SEMANTIC_CLUSTER
o AI_ANALOGY

• SQL DI provides ability to execute “fuzzy” queries
o Example: “Here is the account ID of someone who engaged in fraudulent activity

– show me the 10 account IDs most like this one”

The key: you don’t have to tell Db2 what you mean by “like”

SQL DI – the big picture

23© 2023 IBM Corporation

…BILLINGGENDERCUSTOMER_ID

…autoF3668-QPYBK

…………

USER.DATA_TABLE vectorValueColumn

<1280 byte vector>3668-
QPYBK

CUSTOMER_ID

………

<1280 byte vector>8923-
VFGHT

CUSTOMER_ID

<1280 byte vector>FGENDER

………

DSNAIDB.<generated vector table name>

Model training process – invoked
via GUI, executes outside Db2)

SELECT CustomerID,
AI_SIMILARITY(CUSTOMER_ID, '3668-QPYBK')
FROM USER.DATA_TABLE
WHERE ...

SQL:

Model is a Db2 table containing encoded vectors
for each distinct entity in the source table

SQL DI built-in functions retrieve the vectors to
calculate their results

Data
Engineer DBA

App
Developer

Business
Analyst

Putting SQL procedure language to
work, and doing that in an agile way

24
© 2023 IBM Corporation 24

Some background on SQL procedure language

25

• SQL PL effectively introduced with Db2 9 for z/OS
• It’s a way to write Db2 routines (stored procedures, user-defined

functions and advanced triggers) using only SQL statements
o That is do-able thanks to a set of Db2 SQL statements known as control

statements – a reference to logic flow control
o SQL control statements include GOTO, ITERATE, LOOP, WHILE
- Additionally, variables can be declared in a SQL PL routine

• Terminology for SQL PL routines in a Db2 for z/OS system:
o Stored procedure written in SQL PL is called a native SQL procedure
o User-defined function written in SQL PL is called a compiled SQL scalar function
o Db2 trigger that includes a SQL PL routine is called an advanced trigger

© 2023 IBM Corporation

Key characteristics of SQL PL routines

26

• A SQL PL routine’s one and only executable is its Db2 package; therefore:
o No associated z/OS load or object module
o A SQL PL routine runs in the Db2 database services address space (where all SQL

executes) – not in an external-to-Db2 address space
o A SQL PL routine never has its own task – always runs under task of invoker
o When routine invoked by network-connected application (DRDA requester or

REST client), task is a preemptable SRB in Db2 DDF address space
- That makes SQL execution up to 60% zIIP-eligible (reduces cost of computing)

o Also, no need to switch Db2 thread from caller’s task to task of Db2 routine
- Helps performance when SQL routine invoked many times for a process (e.g.,

used in inner SELECT of correlated subquery)

© 2023 IBM Corporation

Functional advantages of native SQL procedures

27

• A native SQL procedure can be coded as an autonomous procedure
o What that means: suppose a program calls an autonomous procedure and the

procedure does some data-change work (e.g., inserts a row into a table), and
after control returned to calling program that program fails
- In that case, Db2 rolls back data-change work done by program in the unit of

work, but data-change work done by autonomous procedure is not rolled back
- True because autonomous procedure has its own unit of work
- This can make autonomous procedures very useful for things like transaction

“audit trail” functionality (insert done by autonomous procedure records fact
that transaction started, and that record is preserved even if transaction fails)

• A native SQL procedure can accept a Db2 array as input

© 2023 IBM Corporation

Consider usefulness of “tiered” data services

28

• Services that are too fine-grained can put burden on developers
o A developer complained that an application “makes me ask for two

atoms of hydrogen and one atom of oxygen – what I want is water”

• Services that are too coarse-grained limit flexibility in combining services
• An arrangement that lets you have it both ways: coarse-grained services

that are comprised of finer-grained services, with latter being directly
invoke-able by programs that require only narrow-scope services

H + H + O
vs.

Water service

Hydrogen service

Oxygen service

“I want water”

“I want oxygen”

© 2023 IBM Corporation

Tiered data services and Db2 stored procedures

29

• Db2 data services could be tiered by way of nested stored procedures
o A nested stored procedure is one that is called by another stored procedure
o Db2 for z/OS supports up to 64-deep nesting of stored procedures

• Native SQL procedures can boost efficiency in nested procedure situation
o External stored procedures (written in languages other than SQL PL – e.g.,

COBOL) always run under their own tasks in z/OS system, and run in address
spaces outside of Db2 – a lot of “moving parts” when procedures are nested

o As previously noted, a native SQL procedure runs in the Db2 database services
address space and never has its own task – always runs under task of its invoker
- Result: more streamlined execution environment when procedures are nested

© 2023 IBM Corporation

Nested stored procedures and result sets

30

• Suppose client program PRG1 calls Db2 stored procedure PROC1, and
PROC1 calls stored procedure PROC2, and PROC2 generates a result set
that is needed by PRG1 – how can PRG1 retrieve those rows?
o Clunkier, less-efficient way: have PROC2 declare a Db2 temporary table and

insert result set rows into that table – PRG1 will fetch rows from the temp table
o Better way: cursor for PROC2 result set declared WITH RETURN TO CLIENT
- That makes result set rows generated by PROC2 directly fetch-able from PRG1

PRG1

PROC1
PROC2
DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

WITH RETURN TO CLIENT
© 2023 IBM Corporation

Agility advantages of SQL procedure language

31

• SQL PL routines can be deployed via SQL statements (e.g., CREATE
PROCEDURE), and it’s much more likely that an application deployment
tool can issue SQL statements versus Db2 commands
o The fact that Db2 for z/OS SQL PL routines have no associated load or object

modules (a SQL PL routine’s package is its only executable) eliminates an
“other-ness” factor that could complicate DevOps single-streaming

• If you really want to maximize deployment agility, use CREATE OR
REPLACE syntax for Db2 stored procedures (introduced with function level
507 of Db2 12)
o Especially useful for native SQL procedures – can specify version ID in that case

© 2023 IBM Corporation

CREATE OR REPLACE PROCEDURE – examples

32© 2023 IBM Corporation

CREATE PROCEDURE MYPROC1
(IN P1 CHAR(5),

OUT P2 DECIMAL(15,2))
BEGIN

SELECT AVG(SALARY) INTO P2
FROM DSN8C10.EMP

WHERE WORKDEPT = P1;
END

CREATE OR REPLACE PROCEDURE MYPROC1
(IN P1 CHAR(5),

OUT P2 DECIMAL (15,2))
BEGIN

SELECT AVG(SALARY + 1000) INTO
P2

FROM DSN8C10.EMP
WHERE WORKDEPT = P1;

END

CREATE OR REPLACE PROCEDURE MYPROC1
(IN P1 CHAR(5),

OUT P2 DECIMAL (15,2))
VERSION V2
BEGIN

SELECT AVG(SALARY + 5000) INTO
P2

FROM DSN8C10.EMP
WHERE WORKDEPT = P1;

END

CREATE OR REPLACE PROCEDURE MYPROC1
(IN P1 CHAR(5),

OUT P2 DECIMAL (15,2))
VERSION V2
BEGIN

SELECT AVG(SALARY + 9000) INTO
P2

FROM DSN8C10.EMP
WHERE WORKDEPT = P1;

END

Create procedure MYPROC1 Replace MYPROC1 with new definition

Change body
of procedure

Add version V2 of MYPROC1 Replace version V2 of MYPROC1

One more thing about SQL PL routines and agile development

33

• Source code for native SQL procedure is a CREATE PROCEDURE statement
• How should you manage the source code for native SQL procedures?
• My answer: use the same source code management tool (SCM) that you

use for programs written in other languages
o One example: GitLab

• Don’t be thrown off by word CREATE in source for a native SQL procedure
o SCM doesn’t care about language in which programs are written – the SCM

manages versions of source code, written in whatever language

• My point: treat SQL PL CREATE PROCEDURE statements like source code,
because that’s what they are

© 2023 IBM Corporation

Synchronous versus asynchronous processing

34
© 2023 IBM Corporation 34

Building “flex” into Db2-accessing applications

35

• It can be helpful to put a queue (e.g., an IBM MQ queue) between a client
application and a Db2 system – Db2 processing is then asynchronous
• Scenario: application user inputs data that will lead to a Db2 data change

o If data change will be synchronous with respect to user clicking “Submit,” and a
to-be-updated table is unavailable for some reason, transaction could time out

o Suppose instead that client program puts data provided by user on MQ queue,
and server-side process takes data off queue and performs data change actions
- In that case, if target table is temporarily unavailable, end user not impacted –

data remains on queue, and data change process can proceed when table is
again available

MQ
Db2

for z/OS
© 2023 IBM Corporation

How do MQ messages become Db2 updates?

• Typically, by way of an MQ listener
o There is a CICS MQ listener (message arriving on queue drives execution of a

CICS transaction – data in the MQ message is input to the transaction)
o Db2 also provides an MQ listener – with it you can associate an MQ queue with a

Db2 stored procedure
- When message arrives on queue, associated stored procedure is automatically

invoked – message is passed as input to the stored procedure
- You can set up several queues for different message types, and each queue

can be associated with a different stored procedure

© 2023 IBM Corporation 36

MQ and batch transactionalization

37© 2023 IBM Corporation

• If clients now send files of records that drive Db2 batch update jobs,
would it be beneficial for clients to be able to send – and you to process –
a record at a time?
o That can be done with MQ – queues can be securely exposed as web services
o System then functions more like a refinery – continuous flow – versus “job shop”

• One benefit: reduced latency
o Input record can be sent and processed on your system as soon as record is

available on client side
o This as opposed to records waiting to be batched up on client side and then sent

in as files a few times per day (maybe only once per day)

38© 2023 IBM Corporation

Robert Catterall
rfcatter@us.ibm.com

