%2IDUG

CCDhDUG Explain explained...

Sept 18/19% 2023 Toine Michielse, Broadcom

IBM
Toronto, Canada Champion

toine.michielse@broadcom.com

Agenda

* Executing a query
e Access Path base elements
* Final Remarks

Executing a query

SELECT NAME
,PICTURE
FROM DAUGHTERS
WHERE NUMBER =1

A

Getpage

Index: Number

e Ty

N A

Number r\lame Picture

1

Number | Name | Picture

1 Anne

[}--1-

N
>

JAnne

2

Bufferpool Bufferpool

Db2

\Tablespace .

Blsicrpwsn

Buffer Manager

LOB Tablespace

Executing a query

* A key characteristic of relational DBMSs is that the user does not have to
develop a strategy for accessing data

* User only defines the desired result set using SQL syntax

 The DBMS (optimizer) determines optimal access strategy to create this result set.
This is called the access plan and consists of one or more access paths.

* Internal representation for dynamic SQL created at runtime (prepare) if not already
present in local or global statement cache

Note the term plan. Db2 will seriously attempt to follow the plan

* Environmental reasons may cause the plan to fail.

* Processing involving RID lists may run into thresholds and fallback to tablespace scan

e Parallel Iolans may run into less resources than expected and reduce the number of parallel groups or
even fallback to sequential plan

Executing a query : Optimizer

* To determine the access plan, the optimizer breaks down the query in
qguery blocks.

* An informal definition of a query block could be ‘the part of a query that
deals with a single from clause’.

e Optimization involves:
* Query rewrite
Predicate generation (transitive closure)
Statistics gathering
Filter factor calculation
Possible access path determination
Optimal access path selection
Optionally attempt to build parallel access path

Executing a query : Optimizer decision

 The access plan chosen by the optimizer can be made available to the user
through the EXPLAIN facility.

* Explain provides possibility for early verification of the expected performance as well
as table and index design

* It is a good attitude to explain statements and verify this output
e Strongly recommended to EXPLAIN statements before writing the program

* Explain invoked through:

e EXPLAIN command for a single SQL statement
e Using EXPLAIN(YES) parameter on bind

e Beware of the difference between dynamic and static SQL

* Hostvariable vs. literals = use ? as placeholder for host variables
(e.g. where location=? <-> where location = ‘Madrid')

Executing a query : Optimizer output

» Explain output stored in a set of Db2 tables:
e < creator>.PLAN_TABLE (must exist for Explain)
e Contains the actual access path information. One or more rows per query.

e Explain tools:

 all "explain tools" (Broadcom Easy Explain, Toad explain and others) use data of
these tables, show an access plan graph or only a text description

 for a better understanding WHY the optimizer chose the access plan.

 But athe end of the day you have to understand the output of the plan_table
otherwise you cannot understand the output of any tool

« more or less general recommendations may be given (think at sorts, statistics,...)

 the tool would never take a "bad" statement and transform it somehow in a good
statement

Access Path : base elements

Access Path Overview

Simple access paths:

— Tablespace (relation) scan
— Matching index scan
— Non-matching index scan

— (List prefetch)

Compound access paths:
— (multiple index access)
— Nested loop join

— Merge scan join

" _ vbrid iof
Additional elements: ybrid join

— correlated subquery
— non-correlated subquery
— Sorts

— Union (all)

Access Path: Table(space) scan

* At execution time, Db2 will read all pages of the physical dataset

* To reduce elapsed time, sequential prefetch will always be used

* The only access strategy if no usable index exists

* A good access strategy if a large percentage of the rows (> 20%) needs to be
accessed or if the table is very small.

* Predicates will be applied to each and every row
* Unit of I/O is always multiple, physically sequential pages (up to 32)
» Average cost per page a fraction of synchronous I/0

Synchronous I/O
Prefetch I/O

E | EEEE

Access Path: Table(space) scan

* How is this recorded in PLAN_TABLE . .

MOLERY
o — [}

* Accesstype = 'R', Prefetch ='S' (sequential)
* Accessname = blank

ATESCAN
22157195

Query:

EXPLAIN ALL SET QUERYNMO = 1 FOR
SELECT * FROM S¥SIBM.SYSTABLES

WHERE CHAR(DBMNAME) = 'D'!!'USER e
WITH UR

Plan_table contents (important attributes only):

ACCESS
gHO CREATOR THAME ACCESSTYPE % CREATOR ACCESSHMAME PREFETCH

1 5S¥YSIBH SYSTABLES Y R

Why did this query use tablespace scan, there is an index on DBNAME?

Column function CHAR used. This is a STAGE2 predicate and therefore not indexable

How to quickly check the your predicates

* DSN_FILTER_TABLE
e Contains a row for every predicate that is used during execution
* ORDERNO indicates order of evaluation

e Filter factor
e STAGE

* DSN_PREDICAT TABLE

e Contains a row for every predicate in the SQL statement, including generated
ones

* SEARCHARG

Learning more about your predicates

ORDERNO:
* Indicates in which order predicates are evaluated

e Within a STAGE group, in order written in SQL
* For optimal cost/performance, order in ascending

SELECT
A.QUERYNO . 2
, A QBLOCKNO FILTER-FACTOR order within your SQL text
|B.ORDERNO
,|CZ—\ST (A.FILTER FACTOR AS DEC(5,4)) AS FF
, A.BOOLEAN TERM T FILTE R_FACTOR
,A.SEARCHARG
e Number between O and 1
:;ﬁi;ﬁ'“m SE SHBLLI) AS B * #rows_out = #rows_in * filter _factor
, SUBSTR (A.LEFT HAND S5¥DE,1,12) AS LHS ° The Sma”er the better
,SUBSTR(A.RIGHT_HAND_SID 1,12) AS RHS
FROM DSN_PREDICAT_TABLE A LEF JOIN
DSN_FILTER_TABLE B STAG E .
ON A.QUERYNO = B.QUERYNO *
AND A.QBLOCKNO = B.QBLOCKNO * |ndex access
AND A.PREDNO = B.PREDNO
WHERE A.QUERYNO =1 > MATCHlNG
AND TYPE <> 'COMPOUND'
ORDER BY Q#, OB#, EVAL# e SCREENING
» After data page access
e STAGE1

* STAGE?2

Access Path: Non-Matching Index Scan

Prefetch I/O /

PHH EHHH,
/ // S

=

v

/
Synchronous 1/0

* Used when index is expected to provide good filtering but Db2 can
not use matching predicates to limit search to certain leaf pages

* Leaf pages typically read using sequential prefetch
* Entire set of leaf pages must be read
* If not index-only, fraction of the data pages read using synchronous I/0

Access Path: Non-Matching Index Scan

* How is this recorded in PLAN_TABLE
* first row Accesstype ='l, Matchcols=0
* Acessname contains index used

Query' ExPLAIN ALL SET QUERYHNO = 4 FOR

SELECT * FROM SYSIBM.SYSTABLES émcmﬁ SYSTABLES
WHERE TBMNAME = 'ABC® 3

WITH UR;)
GDSNDTXD3
2456

Plan_table contents (important attributes only):

ACCESS\/HMATCH % ACCESS
ONO CREATOR THAME TYPE COLS CREATOR ACCESSHNAME PREFETCH

q 33IYSI1IBHM 3YSTABLES 3YS1BM DSNHDT X003

Access Path: Matching Index Scan

Synchronous 1/0

Index tree

M

5

¥

Data pages

 Db2 uses matching predicates to find first leaf page that may contain
qualifying entries (synchronous 1/0)

* Additional ‘screening’ predicates will be applied to further limit number of entries
that are passed to subsequent processing stages

* Only a fraction of leaf pages (and non-leaf pages) expected to be processed

* Only a fraction of data pages (if any) expected to be processed

Access Path: matching Index scan

* How is this recorded in PLAN_TABLE [T
e Accesstype ="'I', Matchcols > 0

 Tablename not blank, Accessname contains name of the index u

m3YSTABLES
55393.0

Query: EXPLAIN ALL SET QUERYND = ? FOR

SELECT ®* FROM S5¥3IBHM.SYSTABLES
WHERE DBHAME = 'D'!!USER

AND TYPE = 'T"
AND TBHAME LIKE 'X%ABCX%®
WITH UR;

Plan_table contents (important attributes only):

MATCH % ACCESS
OHO CREATOR THAME ACCESSTYPE)\| COLS CREATOR ACCESSMAME

Z S¥Y5IBH SYSTABLES DBZ25YS KSYSTABLES1

Access Path Optimization: List Prefetch

* List prefetch is used when:

Synchronous 1/0O

* Asignificant number of data pages

\, needs to be accessed

v
/ C * The index used is not clustered
R (clusterratio < 80%)
* Multiple non-consecutive pages will
RIDs be combined in a single 1/0 request
pageh DinanEnty ort by « Random I/O is avoided
Rages » PREFETCH='L

L4
/
/

List prefetch 1/0O

Compound Access Path: Multiple IX Access

ol 'l
v an

> > B P Pl Pl P

RID list RID list

Union /
Intersect

RID list

/

List prefetch 1/0O

Compound Access Path: Multiple IX Access

* How is this recorded in PLAN_TABLE

* first row Accesstype ='M’, Prefetch='"L"
* subsequent rows show index access (in MIXOPSEQ) order

— 1

mEEYSTA
55383

ERECAN
152,833

* Accesstype = 'MX'
e or operations on the rid list:
* Accesstype = 'MU' for union, 'MI' for intersection

Query: EXPLAIN ALL SET QUERYHNO = 3 FOR
SELECT * FROM 5S5¥SIBHM.SYSTABLES
WHERE DBHAME = 'D"1TUSER
OR TBCREATOR = USER
WITH UR;

Plan_table contents (important attributes only):

mDEMDT 03
2456.0

XS YSTABLES
S0

ACCESS Y\ ACCESS
CEREATOR CEEATOR ACCES=MAME INDEXOMLY

SYS1BHM SYSTABLES
SYSI1BM SYSTABLES SY=1BHM DSHDTXO3
SYSIBM SYSTABLES DBZSYS XSYSTABLE=1

SYSI1BM SYSTABLES

Compound access paths: Nested loop join

B B S D SR :
Access data 2 Join cols | i
path : Planning 1 '
. data 2 Join cols
datal Join cols : :
: Operations 23
John Geyer 1 A simple
Support 23
Bruce Adamson 23 Access :
: Development 225 :
Outer (composite) table Eeeerrrerrrrrrrr .. i
data 1 data 2 Join cols
John Geyer Planning 1
Composite/result table Bruce Adamson | Operations 23
Bruce Adamson Support 23
David Brown |Development 225

Compound access paths: Nested loop join

 How is this recorded in plan_table:
* The individual simple access paths for outer and inner as usual
* First outer table accessed: Method =0
* Innertable: Method =1

Query:

EXPLAIN ALL SET QUERYHNO = 9 FOR
SELECT =%
FROM S¥SIBM.3YSTABLES A

B 3YSIBHM.SYSCOLUMNS B

B3YSTABLES nfXSCAN
55396.0 H

WHERE A.TBCREATOR B. TBCREATOR AMD

MY SCOLLMMS
936155.0

A . TBMAME B. TBEMAME AND
A.TBCREATOR USER
WITH UR;

RENDCH
958193

ACCESS HMWATCH ACCESS

gHO /JMETHOD Y\ CREATOR THAME CREATOR ACCESSHAME PREFETCH

2 | 3YS1IBH SYSTABLES 3Y3IBM D3INDTX03
3YS1IBH SYSICOLUHMN 3Y3IBM D3INDCX0O1

Compound access paths: Merge Scan Join

(Y

) A simple Asimple s
Access Access
path Outer and inner table path
sorted in join column
order
datal Join cols data 2 Join cols
John Geyer 1 gpeEiEn 1
Bruce Adamson 23 RUIEE s.,pecs
David Brown 225 LEstine 22
write code 23
Outer (composite) table control 275
Inner (new) table
datal data 2 Join cols
John Geyer operation 1
Composite/result table |Bruce Adamson| testing 23
Bruce Adamson| write code 23
David Brown control 225

)

Compound access paths: Merge Scan Join

 How is this recorded in plan_table:

* The individual simple access paths for outer and inner as usual

* First outer table accessed: Method =0

* Inner table : Method =2
Query:

SELECT DISTINCT A.NAME, B.NAME

FROM SYSIBM.SYSCOLUMNS A
, SYSTBM. SYSCOLUMNS B

WHERE (A.TBCREATOR
AND A.TBNAME
ORDER BY A.NAME

B.TBCREATOR OR 0=1)
B . TBNAME

Plan_table contents (important attributes only):

ACCESS MATCH
QNO METHOD CREATOR TNAME TYPE COLS
DSNDCXO01
DSNDCXO01

SYSCOLUMNS I 0
SYSCOLUMNS I 0

0 SYSIBM
2 SYSIBM

And what about sorts ?
 Composite (outer)

* New (inner)

e Sort final result set of this
query block

e Method s

Sor/ft Soyt

Compound access paths: Hybrid Join

i i

Outer (composite) table

Intermediate (phase 1)

Intermediate (phase 2)

A simple Data 1 | Join col
Access 2 2
b 2
path p 3
Datal |Joincol| rid
a 2 P10
b 2 P10
C 3 P4
C 3 P2
Datal |Joincol| rid
C 3 B
C 3 P4
b 2 P10
a 2 P10

Inner (new) table

Joincol | rid
2 P10
3 P4
3 P2
rid
P2
P4 List prefetch I/O
P10

Compound access paths: Hybrid Join

 How is this recorded in plan_table:
* The individual simple access paths for outer and inner as usual
* Inner table : Method =4
Query: e
SELECT A.NAME,/ B.LENGTH , B.NAME, B.LENGTH - I
FROM SYSIBM.SYSCOLUMNS A !
’ SYSIEMS?SEULUMNS E EWFSCAN IS CAN #B5YSCOLUMNS
WHERE A.TBCREATOR = B.TBCREATOR amm) (z) 5384130
AND A.TBNAME = B.TBNAME mm&mE dméwm
AND A.COLTYPE = "CHAR’ wm') seass

AND B.COUTYPE "SMALLINT®
AND A.NAME LIKE "%ID%'
ORDER BY 3,1

MTESCAN
4958971

ts (important attributs only): o

Plan_table conter

ACCESS MATCH
ONO (METHOD), CREATOR TNAME COLS ACCESSNAME

g | SYSIBHM SYSCOLUMN R
4 | SYSIBM SYSCOLUMN I 2 DSNDCXO1
3 0

Final remarks

Best practices:

* The best is the one never executed
* Be wary of “STAGE3” predicates
e Minimize your “potential sync I/0”, aka GETPAGE

* Prevent unnecessary SORTS
e Remove ORDER BY when application is not dependent on a specific row order
e Use DISTINCT carefully, better investigate completeness of join criteria's
e Use UNION ALL instead of UNION when you can guarantee disjoint parts

* Appropriate Statistics
* Optimizer decisions base on available statistics

 When bind is done on empty tables which will contain a significant amount of rows
at runtime, theaccess plan may be totally wrong

e Evaluate when to REBIND

Best practices (cont.):

e Appropriate Statistics (cont)

e Up-to-date statistics does not mean execute RUNSTATS indiscriminately on a
frequent base. Collecting statistics is not for free.

e Let a housekeeping process when to execute RUNSTATS, triggered by thresholds
based on real time statistics.

* New statistics after adding one million rows to a 1000 million row table will usually

not affect optimizer behavior. However.......the same amount of new rows inserted in
a 1000 row table...

* Adding indexes

* In this presentation "stagel" and "indexable" are pointed out. So you may have the
idea that an index to support each and every SQL statement is a good idea.

* Changing data results in updating the index-tree as well

* Each additional index is a trade-off between good insert/update/delete and select
performance

Questions

	Slide 1
	Slide 2: Agenda
	Slide 3: Executing a query
	Slide 4: Executing a query
	Slide 5: Executing a query : Optimizer
	Slide 6: Executing a query : Optimizer decision
	Slide 7: Executing a query : Optimizer output
	Slide 8: Access Path : base elements
	Slide 9: Access Path Overview
	Slide 10: Access Path: Table(space) scan
	Slide 11: Access Path: Table(space) scan
	Slide 12: How to quickly check the your predicates
	Slide 13: Learning more about your predicates
	Slide 14: Access Path: Non-Matching Index Scan
	Slide 15: Access Path: Non-Matching Index Scan
	Slide 16: Access Path: Matching Index Scan
	Slide 17: Access Path: matching Index scan
	Slide 18: Access Path Optimization: List Prefetch
	Slide 19: Compound Access Path: Multiple IX Access
	Slide 20: Compound Access Path: Multiple IX Access
	Slide 21: Compound access paths: Nested loop join
	Slide 22:
	Slide 23: Compound access paths: Merge Scan Join
	Slide 24:
	Slide 25: Compound access paths: Hybrid Join
	Slide 26
	Slide 27: Final remarks
	Slide 28: Best practices:
	Slide 29: Best practices (cont.):
	Slide 30: Questions

