
Explain explained…

Toine Michielse, Broadcom

toine.michielse@broadcom.com

CCDUG
Sept 18/19th 2023
Toronto, Canada

Agenda

• Executing a query

• Access Path base elements

• Final Remarks

2

Executing a query

3

Db2

RDS

Data manager

Buffer Manager

Bufferpool Bufferpool Bufferpool

Stage 1

Stage 2

Index: Number

LOB Tablespace

Getpage

…..….

…2

Anne1

PictureNameNumber

Tablespace

SELECT NAME
,PICTURE

FROM DAUGHTERS
WHERE NUMBER = 1

Optimizer

Access path

Executing a query

• A key characteristic of relational DBMSs is that the user does not have to
develop a strategy for accessing data
• User only defines the desired result set using SQL syntax

• The DBMS (optimizer) determines optimal access strategy to create this result set.
This is called the access plan and consists of one or more access paths.

• Internal representation for dynamic SQL created at runtime (prepare) if not already
present in local or global statement cache

• Note the term plan. Db2 will seriously attempt to follow the plan
• Environmental reasons may cause the plan to fail.

• Processing involving RID lists may run into thresholds and fallback to tablespace scan

• Parallel plans may run into less resources than expected and reduce the number of parallel groups or
even fallback to sequential plan

4

4

Executing a query : Optimizer

• To determine the access plan, the optimizer breaks down the query in
query blocks.

• An informal definition of a query block could be ‘the part of a query that
deals with a single from clause’.

• Optimization involves:
• Query rewrite

• Predicate generation (transitive closure)

• Statistics gathering

• Filter factor calculation

• Possible access path determination

• Optimal access path selection

• Optionally attempt to build parallel access path

5

5

Executing a query : Optimizer decision

• The access plan chosen by the optimizer can be made available to the user
through the EXPLAIN facility.
• Explain provides possibility for early verification of the expected performance as well

as table and index design

• It is a good attitude to explain statements and verify this output

• Strongly recommended to EXPLAIN statements before writing the program

• Explain invoked through:
• EXPLAIN command for a single SQL statement

• Using EXPLAIN(YES) parameter on bind

• Beware of the difference between dynamic and static SQL
• Hostvariable vs. literals → use ? as placeholder for host variables

(e.g. where location = ? <-> where location = ‘Madrid')

6

6

Executing a query : Optimizer output

• Explain output stored in a set of Db2 tables:
• < creator>.PLAN_TABLE (must exist for Explain)

• Contains the actual access path information. One or more rows per query.

• Explain tools:

• all "explain tools" (Broadcom Easy Explain, Toad explain and others) use data of
these tables, show an access plan graph or only a text description

• for a better understanding WHY the optimizer chose the access plan.

• But a the end of the day you have to understand the output of the plan_table
otherwise you cannot understand the output of any tool

• more or less general recommendations may be given (think at sorts, statistics,…)

• the tool would never take a "bad" statement and transform it somehow in a good
statement

7

7

Access Path : base elements

8

Access Path Overview

9

 Simple access paths:
– Tablespace (relation) scan

– Matching index scan

– Non-matching index scan

– (List prefetch)

 Additional elements:
– correlated subquery

– non-correlated subquery

– Sorts

– Union (all)

 Compound access paths:
– (multiple index access)

– Nested loop join

– Merge scan join

– Hybrid join

Access Path: Table(space) scan
• At execution time, Db2 will read all pages of the physical dataset

• To reduce elapsed time, sequential prefetch will always be used

• The only access strategy if no usable index exists

• A good access strategy if a large percentage of the rows (> 20%) needs to be
accessed or if the table is very small.

• Predicates will be applied to each and every row

• Unit of I/O is always multiple, physically sequential pages (up to 32)

• Average cost per page a fraction of synchronous I/O

10

Prefetch I/O

Synchronous I/O

Access Path: Table(space) scan

11

• How is this recorded in PLAN_TABLE

• Accesstype = 'R', Prefetch = 'S' (sequential)

• Accessname = blank

Query:

Plan_table contents (important attributes only):

Why did this query use tablespace scan, there is an index on DBNAME?

 Column function CHAR used. This is a STAGE2 predicate and therefore not indexable

How to quickly check the your predicates

• DSN_FILTER_TABLE
• Contains a row for every predicate that is used during execution

• ORDERNO indicates order of evaluation

• Filter factor

• STAGE

• DSN_PREDICAT_TABLE
• Contains a row for every predicate in the SQL statement, including generated

ones

• SEARCHARG

Learning more about your predicates

SELECT

 A.QUERYNO AS Q#

 ,A.QBLOCKNO AS QB#

 ,B.ORDERNO AS EVAL#

 ,CAST(A.FILTER_FACTOR AS DEC(5,4)) AS FF

 ,A.BOOLEAN_TERM AS BT

 ,A.SEARCHARG

 ,B.STAGE

 ,CAST(A.PREDNO AS SMALLINT) AS P#

 ,A.TYPE

 ,SUBSTR(A.LEFT_HAND_SIDE,1,12) AS LHS

 ,SUBSTR(A.RIGHT_HAND_SIDE,1,12) AS RHS

 FROM DSN_PREDICAT_TABLE A LEFT JOIN

 DSN_FILTER_TABLE B

 ON A.QUERYNO = B.QUERYNO

 AND A.QBLOCKNO = B.QBLOCKNO

 AND A.PREDNO = B.PREDNO

WHERE A.QUERYNO = 1

 AND TYPE <> 'COMPOUND'

ORDER BY Q#, QB#, EVAL#

STAGE:
• Index access

• MATCHING
• SCREENING

• After data page access
• STAGE1
• STAGE2

FILTER_FACTOR:
• Number between 0 and 1
• #rows_out = #rows_in * filter_factor
• The smaller the better

ORDERNO:
• Indicates in which order predicates are evaluated
• Within a STAGE group, in order written in SQL
• For optimal cost/performance, order in ascending

FILTER-FACTOR order within your SQL text

Access Path: Non-Matching Index Scan

14

Prefetch I/O

Synchronous I/O

• Used when index is expected to provide good filtering but Db2 can
not use matching predicates to limit search to certain leaf pages

• Leaf pages typically read using sequential prefetch

• Entire set of leaf pages must be read

• If not index-only, fraction of the data pages read using synchronous I/O

Access Path: Non-Matching Index Scan

15

• How is this recorded in PLAN_TABLE
• first row Accesstype = 'I, Matchcols=0
• Acessname contains index used

Plan_table contents (important attributes only):

Query:

Access Path: Matching Index Scan

16

• Db2 uses matching predicates to find first leaf page that may contain
qualifying entries (synchronous I/O)

• Additional ‘screening’ predicates will be applied to further limit number of entries
that are passed to subsequent processing stages

• Only a fraction of leaf pages (and non-leaf pages) expected to be processed

• Only a fraction of data pages (if any) expected to be processed

Index tree

Data pages

Synchronous I/O

Access Path: matching Index scan

17

• How is this recorded in PLAN_TABLE

• Accesstype = 'I', Matchcols > 0

• Tablename not blank, Accessname contains name of the index used

Plan_table contents (important attributes only):

Query:

Access Path Optimization: List Prefetch

18

Synchronous I/O

List prefetch I/O

Sort by
Page#

RIDs

IDmap entryPage#

• List prefetch is used when:

• A significant number of data pages
needs to be accessed

• The index used is not clustered
(clusterratio < 80%)

• Multiple non-consecutive pages will
be combined in a single I/O request

• Random I/O is avoided

• PREFETCH = 'L'

Compound Access Path: Multiple IX Access

19

List prefetch I/O

RID list RID list

Union /
Intersect

Sort Sort

RID list

Compound Access Path: Multiple IX Access

20

• How is this recorded in PLAN_TABLE

• first row Accesstype = 'M', Prefetch='L'

• subsequent rows show index access (in MIXOPSEQ) order

• Accesstype = 'MX'

• or operations on the rid list:

• Accesstype = 'MU' for union, 'MI' for intersection

Plan_table contents (important attributes only):

Query:

Compound access paths: Nested loop join

21

A simple
Access

path

data 1 Join cols

John Geyer 1

Bruce Adamson 23

David Brown 225

A simple
Access

path

data 2 Join cols

Planning 1

data 2 Join cols

Operations 23

Support 23

data 2 Join cols

Development 225

data 1 data 2 Join cols
John Geyer Planning 1

Bruce Adamson Operations 23
Bruce Adamson Support 23

David Brown Development 225

Outer (composite) table

Inner (new) table

Composite/result table

Compound access paths: Nested loop join

22

• How is this recorded in plan_table:

• The individual simple access paths for outer and inner as usual

• First outer table accessed: Method = 0

• Inner table : Method = 1

Plan_table contents (important attributes only):

Query:

Compound access paths: Merge Scan Join

A simple
Access

path

data 1 Join cols

John Geyer 1

Bruce Adamson 23

David Brown 225

data 1 data 2 Join cols
John Geyer operation 1

Bruce Adamson testing 23
Bruce Adamson write code 23

David Brown control 225

Outer (composite) table

Composite/result table

A simple
Access

path

data 2 Join cols

operation 1

write specs 2

testing 23

write code 23

control 225

Inner (new) table

Outer and inner table
sorted in join column
order

24

• How is this recorded in plan_table:

• The individual simple access paths for outer and inner as usual

• First outer table accessed: Method = 0

• Inner table : Method = 2

Plan_table contents (important attributes only):

Query:
And what about sorts ?

• Composite (outer)

• New (inner)

• Sort final result set of this
query block

• Method = 3

Compound access paths: Merge Scan Join

Compound access paths: Hybrid Join

A simple
Access

path

Data 1 Join col
a 2
b 2
c 3

Join col rid
2 P10
3 P4
3 P2

Data 1 Join col rid
a 2 P10
b 2 P10
c 3 P4
c 3 P2

Sort

Intermediate (phase 1)

Data 1 Join col rid
c 3 P2
c 3 P4
b 2 P10
a 2 P10

rid

P2

P4

P10

List prefetch I/O

Intermediate (phase 2)

Outer (composite) table

Inner (new) table

26

 Note the list prefetch

 Also note lack of sort

Plan_table contents (important attributs only):

Query:

Compound access paths: Hybrid Join
• How is this recorded in plan_table:

• The individual simple access paths for outer and inner as usual

• Inner table : Method = 4

Final remarks

27

Best practices:

• The best ………. is the one never executed
• Be wary of “STAGE3” predicates

• Minimize your “potential sync I/O”, aka GETPAGE

• Prevent unnecessary SORTS
• Remove ORDER BY when application is not dependent on a specific row order

• Use DISTINCT carefully, better investigate completeness of join criteria's

• Use UNION ALL instead of UNION when you can guarantee disjoint parts

• Appropriate Statistics
• Optimizer decisions base on available statistics

• When bind is done on empty tables which will contain a significant amount of rows
at runtime, theaccess plan may be totally wrong

• Evaluate when to REBIND
28

Best practices (cont.):

• Appropriate Statistics (cont)
• Up-to-date statistics does not mean execute RUNSTATS indiscriminately on a

frequent base. Collecting statistics is not for free.
• Let a housekeeping process when to execute RUNSTATS, triggered by thresholds

based on real time statistics.
• New statistics after adding one million rows to a 1000 million row table will usually

not affect optimizer behavior. However…….the same amount of new rows inserted in
a 1000 row table…

• Adding indexes
• In this presentation "stage1" and "indexable" are pointed out. So you may have the

idea that an index to support each and every SQL statement is a good idea.
• Changing data results in updating the index-tree as well
• Each additional index is a trade-off between good insert/update/delete and select

performance
29

Questions ???

	Slide 1
	Slide 2: Agenda
	Slide 3: Executing a query
	Slide 4: Executing a query
	Slide 5: Executing a query : Optimizer
	Slide 6: Executing a query : Optimizer decision
	Slide 7: Executing a query : Optimizer output
	Slide 8: Access Path : base elements
	Slide 9: Access Path Overview
	Slide 10: Access Path: Table(space) scan
	Slide 11: Access Path: Table(space) scan
	Slide 12: How to quickly check the your predicates
	Slide 13: Learning more about your predicates
	Slide 14: Access Path: Non-Matching Index Scan
	Slide 15: Access Path: Non-Matching Index Scan
	Slide 16: Access Path: Matching Index Scan
	Slide 17: Access Path: matching Index scan
	Slide 18: Access Path Optimization: List Prefetch
	Slide 19: Compound Access Path: Multiple IX Access
	Slide 20: Compound Access Path: Multiple IX Access
	Slide 21: Compound access paths: Nested loop join
	Slide 22:
	Slide 23: Compound access paths: Merge Scan Join
	Slide 24:
	Slide 25: Compound access paths: Hybrid Join
	Slide 26
	Slide 27: Final remarks
	Slide 28: Best practices:
	Slide 29: Best practices (cont.):
	Slide 30: Questions

