Leading the DB2 User
Community since 1988

Db2 Hot topics from Progressive
Insurance

Dustin Ratliff & Bob Vargo
19 September 2023

@IDUGDB2

Agenda

* Db2 Al install challenges

* Db2 Al usage challenges

* Db2 driver upgradeissues

* Db2 .Net core driver issues

« Windows 11/Kerberos issues
* IBM Replication center issues

@IDUGDB2

Db2 Al at Progressive

* Db2 Al was broughtin for a POC effort

— We wanted to take a look at the install portion

— We wanted to connect Db2 Al to our sandbox (1 way) and
QA (2 way) data sharing groups to take a look at the
features and benefits

— Our intention was to target our QA data sharing members
as target members and not fully install the product on those
LPARS

» The LPAR where our sandbox memberruns is smaller
— It was never intended to go to PROD with this effort

@IDUGDB2

Db2 Al Iinstall - SMPE

« As a Db2 SYSPROG | handled the Db2 Al install portion while our
z/OS systems programmer handled the rest (WML, spark, etc)

* The initial SMPE install of Db2 Al and related products went
smoothly

- Afew notes on the initial SMPE install:
— Ensure that JAVA_ HOME is set as your install directory
within your jobs

— To enable Db2ZAl 1.5 to run with z/OS, you must set up
Dynamic Enablement. For instructions, see the Dynamic
Enablement section of the program directory.

— We setup different SMPE global zones for Db2 Al itself and
the other products (WML, spark, etc)

@IDUGDB2

Db2 Al install and challenges — Post SMPE

« Automation of the Db2 Al STCs

— These tasks are OMVS tasks and do not cut messages to
the syslog upon startup or shutdown

— The Db2 Al tasks spin up multiples and have numbers at
the end of some of them which are not the same every
time:

DBAINDS3 (the end number here will be 1-9)
DBAIND
DBAIND

— For these tasks the one with the number on it is the main
task.

— If any non numbered task fails, it is suppose to self restart

@IDUGDB2

Db2 Al install and challenges — Post SMPE

« Automation of the Db2 Al STCs

— The solution we ended up implementing was to set a timer
and every 5 mins “watch” the Db2 Al STC with the number
at the end

» Ops had to wait until the product was started to
determine which one this was as the number changed
each time from 1-9

— At IPL time, this timer would decrease to every 1 min so
that if the tasks did not come down we would not hang
system shutdown

@IDUGDB2

Db2 Al install and challenges — Post SMPE

« The STCs required symbolic links due to the 100 character limit on
the PARM value in the JCL

— Withinthe startup JCL for the liberty server and Db2 Al
STCs there are parm values which in JCL have a 100
character limit

— Wereached this limitand did symbolic links within OMVS
to get around it:
/install/abcdefgh/ijkilmnop/grs/tuv/iwxyz became
/install/db2ai

@IDUGDB2

Db2 Al install and challenges — Post SMPE

* There were so many ports required for the product

— Withinthe install doc it asks you to reserve 27 network
ports for the various pieces and parts of the product

— These are all aside from your normal Db2 ports you are
already using

List of products needing all of these ports:

z/OS Spark master, z/OS Spark master REST API, z/OS Spark
master Ul, z/OS Spark worker, z/OS Spark worker Ul, z/OS Spark
executor, z/OS Spark driver, z/OS Spark driver block manager,
Spark-integration service, Scoring service, WMLz base Ul
service, WMLz base core services, Configuration tool service,
Db2ZAl user interface, Db2ZAl Liberty server

@IDUGDB2

Db2 Al install and challenges — Post SMPE

 Figure out the TCP thing which bob had to fix prior to getting
passtickets to work.

@IDUGDB2

Db2 Al usage challenges

« Once we got the product up and running, it filled up the /tmp
directory inside of OMVS

— What happened was once we started the Al and liberty
server tasks, It started learning about the target Db2s we
connected it to.

— As it learns, it stores data in the /tmp directory in OMVS

— In order to correct this, we had to set the TMPDIR evn
variable to specify where Al is to put the temp data
ex: export TMPDIR=/newTemDir

— Or if you started it from an STC proc you'd set the TMPDIR
env under the STDENV DD card

@IDUGDB2

Db2 Al usage challenges

* When we tried to kick off a system assessment liberty server
consumed nearly all of the AUX storage on the LPAR where it was
running.

— The system assessmentwhich | ran was looking back at a
weeks worth of data

— The IBM documentation states that 25GB additional
storage is needed while system assessments and training
IS executing

» W e have this on the LPAR but not a lot more

@IDUGDB2

Db2 Al usage challenges

* When we tried to kick off a system assessment liberty server
consumed nearly all of the AUX storage on the LPAR where it was
running.

— Whenl tried to stop the liberty server there was not enough
AUX storage to spin up the address space to do so, | had
to hard cancel it to free the storage

— Wedid not have to IPL to get out of this

— We did have another crash of this LPAR later in this POC
which we suspected Db2 Al to be involved with as well

@IDUGDB2

Db2 Al usage challenges

« Throughoutthe POC, due to previously mentioned challenges we
were not able to run a full system assessment

— Mainly between the filling of the TMP directories and the
AUX storage shortages each time we tried the system
assessmentfailed and nearly crashed the systems

@IDUGDB2

Db2 Al usage challenges

* When it first was connected to a target Db2, it kicked off its
learning and a system assessment which did get us partial
information which we could look at

— One thing we noticed when looking at the DCC capabilities
was that the graphs showing clients with WLB enabled
seemed incorrect

— We were able to see the IPs listed and navigate to those
clients and show within their db2 cfg files they were running
with enableW LB=true

» W e suspect that this feature is using the ATT field
within a —DIS LOCATION command which sometimes
specifies WLB indicating the clientis using a sysplex
WLB connection

» We saw by issuing the DIS LOCATION command that
it also did not always seem correct with this information

@IDUGDB2

Db2 Al Positives

They have decoupled the need to WML to be installed with Db2Al

The DCC would be nice to learn more about the DDF traffic including
connection floods and possible areas where we need to tweak things like WLB

Profiling recommendations would be very helpful and interesting

We believe that the SQL optimizations could be very helpful (YMMV, if
watched)

We believe that the direction and vison for this product is a good one and are
still interested in it, however with our experience it was not something we
wanted to implement in PROD at this time.

@IDUGDB2

Questions?

Agenda — Part 2

» Fast Traversal Block (FTBs) use at Progressive
- Batch Generation of V13 Migration Jobs

* Using Profiles to Control DDF workload

@IDUGDB2

@IDUGDB2

Fast Traversal Blocks — Background

« Fast Index traversal (aka FTB) Is a process that
can improve the performance of random index

aCCessS.

* FTBs use memory outside of the Db2 buffer pools

@IDUGDB2

Controlling FTBs

* SYSIBM.SYSINDEXCONTROL

— This table can be used in conjunction
INDEX_MEMORY_CONTROL to enable, disable or force FTB
usage for specific indexes

« ZPARMS

— INDEX MEMORY_CONTROL
- DISABLE
- AUTO
« A Storage Amount (meg)
« SELECTED (canbe AUTO or a Storage Amount in meg)

— FTB_NON_UNIQUE_INDEX (Yes or No)

@IDUGDB2

Our Implementation

* We do not use SYSIBM.SYSINDEXCONTROL

 INDEX_MEMORY_CONTROL Is set to a storage
amount (for example: 512)

— In production we used a small amount to start, much less
than 20% of the total buffer pool size

- We have FTB_. NON_UNIQUE_INDEX=NO for
NOW

Monitoring FTBs

* Fields in IFCID 2

« -DIS STATS
— ITC: INDEXTRAVERSECOUNT
— IMU: INDEXMEMORYUSAGE

* |[FCID 389
* |[FCID 477

@IDUGDB2

@IDUGDB2

FTB info In IFCID 2 — mapped by DSNDQIST

* QISTTRAVMIN - Internal value — it's always 1000
at the moment. It represents the minimum
threshold of index traversals

* QISTFTBCANT - Total number of indexes
which meet FTB criteria

— It's actually the number of OPEN INDEX PARTS that
which meet FTB criteria

@IDUGDB2

FTB info In IFCID 2

* QISTFTBCAN - Total number of OPEN INDEX
PARTS which meet FTB criteria and the traverse
count is above the threshold (QISTTRAVMIN =
1000)

— Re-evaluated every two minutes
— Question: why aren’t they all in use as FTBs ?

* QISTFTBSIZE - total memory allocation for all
FTBs for this member (In Meg)

— This may be less than the potential

@IDUGDB2

FTB info In IFCID 2

 QISTFTBNUMP - Number of Index Parts for
which FTB existed in the previous run of In-
memory optimization (Prior two minute interval)

* QISTFTBNUMC - Number of Index Parts for
which FTB exists In the current run of in-memory
optimization (for the current two minute interval)

@IDUGDB2

-DIS STATS(IMU) LIMIT(*)

- Displays the index parts, in descending order by memory
usage, that are currently active.

* V12 example:

DSNT /783l

DBID PSID DBNAME [IX-SPACE LVL PART SIZE(KB)
00418 00297 SAMPDB1 INDEX123 004 0001 00045152
00435 00016 SAMPDB2 INDEX345 004 0001 00024064
00267 00100 SAMPDB3 INDEX567 004 0001 00012683

@IDUGDB2

-DIS STATS(ITC) LIMIT(*)

« With LIMIT(*) all index parts that are eligible will
be displayed (QISTFTBCANT)

The V12 display is descending by Traversal Count

— Recent maintenance may change this — V13 changes
have been retrofitted to V12

The V13 display is descending by FTB Factor

@IDUGDB2

-DIS STATS(ITC)

* The display can be qualified by DBNAME, SPACE
& PART

* V12 display:

DSNT830I

DBID PSID DBNAME IX-SPACE LVL PART TRAV. COUNT

00406 00094 SAMPDB2 INDEX0O01 003 0001 0000452354

* V13 display:
DSNT830I
DBID PSID DBNAME IX-SPACE LVL PART TRAV. COUNT FTB FACTOR

00444 00019 SAMPDB5 INDEX002 003 0001 0000000000 0000000000

@IDUGDB2

IFCID 389

* This Is the same data from the —DIS STATS(IMU)
LIMIT(*) command.

 We send STATS(*) to SMF and this IFCID is
covered. The IFCID cuts every two minutes —
each time the FTBs are re-evaluated

* V13 now includes the FTB Factor for each index
part

IFCID 477

 This IFCID tracks the create/free of FTBs

* Not externalized with STAT(*)

« Cuts on the two minute interval

@IDUGDB2

@IDUGDB2

Our results

* We have a large number of index parts that
gualify based on traversal count (> 1000)

« Memory utilization is between 30 — 40% of our
specified amount

« Getpage decrease is noticeable — CPU decrease
has been more difficult to discern

 Qverhead hasn’t increased

e
L IDUG @IDUGDB2

U= Leading the D82 User
Community since 1988

It would be nice If. ..

 Index parts that have a high traversal count
combined with a low FTB factor could be more
easily tracked

e @IDUGDB2

Batch Generation of V13 Migration Jobs

- Supplied by V13 APAR PH52482 / PTF U191497

« COMMENTS:

This PTF adds new parts DSNTIDOM, DSNTIDON,
DSNTIDOA, and DSNTIIBC in the prefix. SDSNSAMP
target Ilbrary adds a new Iprogram DSNTIFMT in the
prefix. SDSNLOAD target library, and generates a new
Db2 installation CLIST which can run in the

background and enables users to generate tailored Db2
migration or function level activation jobs.

@IDUGDB2

First Step

* Use DSNTXAZP to generate TIDXA members (Db2
Installation Data) at V12 for all subsystems

« Used as input to the install/migrate clist

* Not needed If you keep these up to date

e
5 1DUG @IDUGDB2

S "_\ eading the DB2 User
Community since 1988

DSNTIJBC

* The job has three steps:

— Run DSNTIFMT to reformat the install clist (DSNTINST) to
run in batch (DSNTINSB)

— |IEBGENER to print DSNTINSB to SYSOUT

— Invoke DSNTINSB with ISPF batch

@IDUGDB2

DSNTIDOM

- Parms used to generate migration jobs for a standalone Db2 or for the
first member of a data sharing group

BATCH _MODE=YES

USE_ZOSMF_WORKFLOW=NO

INSTALL_TYPE=MIGRATE

MIGRATE_INPUT_DATA SET=<V12 TIDXAforthis subsystem >
DATA_SHARING=YES

MIGRATE_FIRST_GROUP_MEMBER=YES
DB2_SMPE_LIBRARY_NAME_PREFIX=<Prefix of V13 SMPE datasets >
DB2_SMPE_LIBRARY_NAME_SUFFIX=

INSTALL_DATA SET_ PREFIX=<Prefix for generated datasets >
INSTALL_DATA SET_SUFFIX=<SSID >

DEFAULT PARAMETER_INPUT MEMBER=DSNTIDXA < V13 Shipped version >
PARAMETER_OUTPUT_MEMBER=<Generated V13 TIDXAforthis member >
TARGET_FUNCTION_LEVEL=

CONSOLE_NAME=

@IDUGDB2

DSNTIDON

- Parms used to generate migration jobs for additional member(s) of a
data sharing group

BATCH MODE=YES

USE_ZOSMF_WORKFLOW=NO

INSTALL_TYPE=MIGRATE

MIGRATE_INPUT_DATA SET=<V12 TIDXAforthis subsystem >
DATA_SHARING=YES

MIGRATE_FIRST_GROUP_MEMBER=NO
DB2_SMPE_LIBRARY_NAME_PREFIX=<Prefix of V13 SMPE datasets >
DB2_SMPE_LIBRARY_NAME_SUFFIX=

INSTALL_DATA SET_ PREFIX=<Prefix for generated datasets >

* The DEFAULT_PARAMETER _INPUT_MEMBER was generated

* by the first job. It's the V13 DSNTIDXAthat was output from that job
DEFAULT_PARAMETER_INPUT_MEMBER=<V13 DSNTIDXAfrom first member>
PARAMETER_OUTPUT_ MEMBER=<Generated V13 TIDXAforthis member >
CONSOLE_NAME=

@IDUGDB2

DSNTIDOA

- Parms for activating a Db2 function level

BATCH_MODE=YES

USE_ZOSMF_WORKFLOW=NO

INSTALL_TYPE=ACTIVATE

DB2_SMPE_LIBRARY_ NAME_PREFIX==< Prefix of V13 SMPE datasets >
DB2_ SMPE_LIBRARY_NAME_SUFFIX=
INSTALL_DATA SET PREFIX=<Careful here —read the doc>

DEFAULT _PARAMETER_INPUT _MEMBER==<Valid V13 DSNTIDXA>
PARAMETER_OUTPUT MEMBER=<New TIDXAforthis member>
TARGET_FUNCTION_LEVEL=V13R1M5xx

@IDUGDB2

Our Implementation

* Generate V12 TIDXA members for all
subsystems. We do not keep these up to date.

» Use a homegrown variable substitution utility to
generate TIDOM & TIDON members and batch
jobs to run DSNTINSB.

» The original migration jobs are tailored and then
cloned for use for subsequent data sharing group
migrations.

@IDUGDB2

Controlling DDF with Profiling

 We have a number of profiles that have been
used to try to control connection flooding

* At times these profiles have worked when —STOP
DDF MODE(FORCE) on all members has failed to
control the connection flood

@IDUGDB2

Controlling DDF with Profiling

« The Hammer: Use MONITOR ALL
CONNECTIONS with EXCEPTION DIAGLEVEL?2
for Location 0.0.0.0. The number of allowable
connections Is set to a very small value.

* The problem connections bleed off and this gives
us time to shut down the offending servers.

@IDUGDB2

Controlling DDF with Profiling

« Smaller Hammer: Use MONITOR ALL
CONNECTIONS with EXCEPTION_DIAGLEVELZ2
for a specific location. The number of allowable
connections Is set to a very small value but it only
applies to one location. Limiting threads by
AUTHID also works.

» This also buys time to shut down the problem
server.

@IDUGDB2

Controlling DDF with Profiling

* These profiles are kept in the profile tables with
PROFILE ENABLED set to ‘N’ so that they can
be activated when needed.

- We also have samples that can be quickly
changed when new locations cause Issues.

@IDUGDB2

Controlling DDF with Profiling

» Our monitoring checks for connection flooding
every minute on every production subsystem. We
Identify flooding very quickly.

e
L IDUG @IDUGDB2

U= Leading the D82 User
Community since 1988

Controlling DDF with Profiling

* Question: Does this work ?

— It depends

* Question: would Db2 Al work better ?

— Again — it depends

@IDUGDB2

Questions ?

@IDUGDB2

Appendix

@IDUGDB2

Running DSNTIJBC

* We condensed all of the steps into one proc

[ISTEPO2 EXECTIJBC
[ISTEPO1.SYSIN DD *
[IBATISPE.SYSTSIN DD *
ISPSTART CMD(%DSNTINSB +
OVERPARM(<Parm.Library>(<Parm_mem>))
) BREDIMAX(1)

Parm_memi s a specific TIDOM, TIDON or TIDOA member

Running DSNTIJBC with VUE

* The clist invocation has to change for VUE

[ISTEPO2 EXECTIJBC
/ISTEPO1.SYSIN DD *
IIBATISPE.SYSTSIN DD *

ISPSTART CMD(%DSNTINSB +
OVERPARM(<Parm.Library>(<Parm_mem>)) +
OTCLPARM(Parm.Library(DSNTIDVU)) +

) BREDIMAX(1)

Parm_memis a specific TIDOM, TIDONor TIDOAmember— same as before
DSNTIDVU must have these settings:

OTC_LICENSE_USAGE=YES
LICENSE_TERMS_ACCEPTED=YES

@IDUGDB2

o
. IDUG @IDUGDB2

Vg Leading the DB2
ce 1968

Tracing for DSNTINSB

* You can pass these trace parms to the invocation
of DSNTINSB:
— CONTROL(L) - LIST
— CONTROL(C) — CONLIST
— CONTROL(S) - SYMLIST

ISPSTART CMD(%DSNTINSB CONTROL(S) +
OVERPARM(<Parm.Library>(<Parm_mem>)) +
OTCLPARM(Parm.Library(DSNTIDVU)) +

) BREDIMAX(1)

@IDUGDB2

Debugging for DSNTINSB

* You can also run the format program (DSNTIFMT)
and save a copy of DSNTINSB. This can come in
handy until you get the parms set properly. You
can use this to add additional tracing (WRITE
statements) If need be.

* The error messages aren’t always informative.

@IDUGDB2

Parms for DSNTIDOM,ON & OA

- Each of these members has a set of required
parms and a set of optional parms. You should
carefully review the descriptions for all of the
parms.

* The parms In this presentation were the required
parms that worked at our shop. We also use some
of the optional parms as well.

	Slide 1: Db2 Hot topics from Progressive Insurance
	Slide 2: Agenda
	Slide 3: Db2 AI at Progressive
	Slide 4: Db2 AI install - SMPE
	Slide 5: Db2 AI install and challenges – Post SMPE
	Slide 6: Db2 AI install and challenges – Post SMPE
	Slide 7: Db2 AI install and challenges – Post SMPE
	Slide 8: Db2 AI install and challenges – Post SMPE
	Slide 9: Db2 AI install and challenges – Post SMPE
	Slide 10: Db2 AI usage challenges
	Slide 11: Db2 AI usage challenges
	Slide 12: Db2 AI usage challenges
	Slide 13: Db2 AI usage challenges
	Slide 14: Db2 AI usage challenges
	Slide 15: Db2 AI Positives
	Slide 16: Questions?
	Slide 17: Agenda – Part 2
	Slide 18: Fast Traversal Blocks – Background
	Slide 19: Controlling FTBs
	Slide 20: Our Implementation
	Slide 21: Monitoring FTBs
	Slide 22: FTB info in IFCID 2 – mapped by DSNDQIST
	Slide 23: FTB info in IFCID 2
	Slide 24: FTB info in IFCID 2
	Slide 25: -DIS STATS(IMU) LIMIT(*)
	Slide 26: -DIS STATS(ITC) LIMIT(*)
	Slide 27: -DIS STATS(ITC)
	Slide 28: IFCID 389
	Slide 29: IFCID 477
	Slide 30: Our results
	Slide 31: It would be nice if . . .
	Slide 32: Batch Generation of V13 Migration Jobs
	Slide 33: First Step
	Slide 34: DSNTIJBC
	Slide 35: DSNTIDOM
	Slide 36: DSNTIDON
	Slide 37: DSNTIDOA
	Slide 38: Our Implementation
	Slide 39: Controlling DDF with Profiling
	Slide 40: Controlling DDF with Profiling
	Slide 41: Controlling DDF with Profiling
	Slide 42: Controlling DDF with Profiling
	Slide 43: Controlling DDF with Profiling
	Slide 44: Controlling DDF with Profiling
	Slide 45: Questions ?
	Slide 46: Appendix
	Slide 47: Running DSNTIJBC
	Slide 48: Running DSNTIJBC with VUE
	Slide 49: Tracing for DSNTINSB
	Slide 50: Debugging for DSNTINSB
	Slide 51: Parms for DSNTIDOM,ON & OA

