
@IDUGDB2

Db2 Hot topics from Progressive

Insurance

Dustin Ratliff & Bob Vargo

19 September 2023

@IDUGDB2@IDUGDB2

Agenda

• Db2 AI install challenges

• Db2 AI usage challenges

• Db2 driver upgrade issues

• Db2 .Net core driver issues

• Windows 11/Kerberos issues

• IBM Replication center issues

@IDUGDB2@IDUGDB2

Db2 AI at Progressive

• Db2 AI was brought in for a POC effort

– We wanted to take a look at the install portion

– We wanted to connect Db2 AI to our sandbox (1 way) and

QA (2 way) data sharing groups to take a look at the

features and benefits

– Our intention was to target our QA data sharing members

as target members and not fully install the product on those

LPARs

» The LPAR where our sandbox member runs is smaller

– It was never intended to go to PROD with this effort

@IDUGDB2@IDUGDB2

Db2 AI install - SMPE

• As a Db2 SYSPROG I handled the Db2 AI install portion while our

z/OS systems programmer handled the rest (WML, spark, etc)

• The initial SMPE install of Db2 AI and related products went
smoothly

• A few notes on the initial SMPE install:

– Ensure that JAVA_HOME is set as your install directory

within your jobs

– To enable Db2ZAI 1.5 to run with z/OS, you must set up

Dynamic Enablement. For instructions, see the Dynamic

Enablement section of the program directory.

– We setup different SMPE global zones for Db2 AI itself and

the other products (WML, spark, etc)

@IDUGDB2@IDUGDB2

Db2 AI install and challenges – Post SMPE

• Automation of the Db2 AI STCs

– These tasks are OMVS tasks and do not cut messages to

the syslog upon startup or shutdown

– The Db2 AI tasks spin up multiples and have numbers at

the end of some of them which are not the same every

time:

DBAIND3 (the end number here will be 1-9)

DBAIND

DBAIND

– For these tasks the one with the number on it is the main

task.

– If any non numbered task fails, it is suppose to self restart

@IDUGDB2@IDUGDB2

Db2 AI install and challenges – Post SMPE

• Automation of the Db2 AI STCs

– The solution we ended up implementing was to set a timer

and every 5 mins “watch” the Db2 AI STC with the number

at the end

» Ops had to wait until the product was started to

determine which one this was as the number changed

each time from 1-9

– At IPL time, this timer would decrease to every 1 min so

that if the tasks did not come down we would not hang

system shutdown

@IDUGDB2@IDUGDB2

Db2 AI install and challenges – Post SMPE

• The STCs required symbolic links due to the 100 character limit on

the PARM value in the JCL

– Within the startup JCL for the liberty server and Db2 AI

STCs there are parm values which in JCL have a 100

character limit

– We reached this limit and did symbolic links within OMVS

to get around it:

/install/abcdefgh/ijklmnop/qrs/tuv/wxyz became

/install/db2ai

@IDUGDB2@IDUGDB2

Db2 AI install and challenges – Post SMPE

• There were so many ports required for the product

– Within the install doc it asks you to reserve 27 network
ports for the various pieces and parts of the product

– These are all aside from your normal Db2 ports you are
already using

List of products needing all of these ports:

z/OS Spark master, z/OS Spark master REST API, z/OS Spark
master UI, z/OS Spark worker, z/OS Spark worker UI, z/OS Spark
executor, z/OS Spark driver, z/OS Spark driver block manager,
Spark-integration service, Scoring service, WMLz base UI
service, WMLz base core services, Configuration tool service,
Db2ZAI user interface, Db2ZAI Liberty server

@IDUGDB2@IDUGDB2

Db2 AI install and challenges – Post SMPE

• Figure out the TCP thing which bob had to fix prior to getting

passtickets to work.

@IDUGDB2@IDUGDB2

Db2 AI usage challenges

• Once we got the product up and running, it filled up the /tmp

directory inside of OMVS

– What happened was once we started the AI and liberty

server tasks, It started learning about the target Db2s we

connected it to.

– As it learns, it stores data in the /tmp directory in OMVS

– In order to correct this, we had to set the TMPDIR evn

variable to specify where AI is to put the temp data

ex: export TMPDIR=/newTemDir

– Or if you started it from an STC proc you’d set the TMPDIR

env under the STDENV DD card

@IDUGDB2@IDUGDB2

Db2 AI usage challenges

• When we tried to kick off a system assessment liberty server

consumed nearly all of the AUX storage on the LPAR where it was
running.

– The system assessment which I ran was looking back at a

weeks worth of data

– The IBM documentation states that 25GB additional

storage is needed while system assessments and training

is executing

» We have this on the LPAR but not a lot more

@IDUGDB2@IDUGDB2

Db2 AI usage challenges

• When we tried to kick off a system assessment liberty server

consumed nearly all of the AUX storage on the LPAR where it was
running.

– When I tried to stop the liberty server there was not enough

AUX storage to spin up the address space to do so, I had

to hard cancel it to free the storage

– We did not have to IPL to get out of this

– We did have another crash of this LPAR later in this POC

which we suspected Db2 AI to be involved with as well

@IDUGDB2@IDUGDB2

Db2 AI usage challenges

• Throughout the POC, due to previously mentioned challenges we

were not able to run a full system assessment

– Mainly between the filling of the TMP directories and the

AUX storage shortages each time we tried the system

assessment failed and nearly crashed the systems

@IDUGDB2@IDUGDB2

Db2 AI usage challenges
• When it first was connected to a target Db2, it kicked off its

learning and a system assessment which did get us partial
information which we could look at

– One thing we noticed when looking at the DCC capabilities
was that the graphs showing clients with WLB enabled
seemed incorrect

– We were able to see the IPs listed and navigate to those
clients and show within their db2 cfg files they were running
with enableWLB=true

» We suspect that this feature is using the ATT field
within a –DIS LOCATION command which sometimes
specifies WLB indicating the client is using a sysplex
WLB connection

» We saw by issuing the DIS LOCATION command that
it also did not always seem correct with this information

@IDUGDB2@IDUGDB2

Db2 AI Positives

• They have decoupled the need to WML to be installed with Db2AI

• The DCC would be nice to learn more about the DDF traffic including

connection floods and possible areas where we need to tweak things like WLB

• Profiling recommendations would be very helpful and interesting

• We believe that the SQL optimizations could be very helpful (YMMV, if

watched)

• We believe that the direction and vison for this product is a good one and are

still interested in it, however with our experience it was not something we

wanted to implement in PROD at this time.

@IDUGDB2@IDUGDB2

Questions?

@IDUGDB2@IDUGDB2

Agenda – Part 2

• Fast Traversal Block (FTBs) use at Progressive

• Batch Generation of V13 Migration Jobs

• Using Profiles to Control DDF workload

@IDUGDB2@IDUGDB2

Fast Traversal Blocks – Background

• Fast index traversal (aka FTB) is a process that

can improve the performance of random index

access.

• FTBs use memory outside of the Db2 buffer pools

@IDUGDB2@IDUGDB2

Controlling FTBs

• SYSIBM.SYSINDEXCONTROL
– This table can be used in conjunction

INDEX_MEMORY_CONTROL to enable, disable or force FTB
usage for specific indexes

• ZPARMs
– INDEX_MEMORY_CONTROL

• DISABLE

• AUTO

• A Storage Amount (meg)

• SELECTED (can be AUTO or a Storage Amount in meg)

– FTB_NON_UNIQUE_INDEX (Yes or No)

@IDUGDB2@IDUGDB2

Our Implementation

• We do not use SYSIBM.SYSINDEXCONTROL

• INDEX_MEMORY_CONTROL is set to a storage
amount (for example: 512)
– In production we used a small amount to start, much less

than 20% of the total buffer pool size

• We have FTB_NON_UNIQUE_INDEX=NO for
now

@IDUGDB2@IDUGDB2

Monitoring FTBs

• Fields in IFCID 2

• -DIS STATS

– ITC: INDEXTRAVERSECOUNT

– IMU: INDEXMEMORYUSAGE

• IFCID 389

• IFCID 477

@IDUGDB2@IDUGDB2

FTB info in IFCID 2 – mapped by DSNDQIST

• QISTTRAVMIN – Internal value – it’s always 1000

at the moment. It represents the minimum

threshold of index traversals

• QISTFTBCANT - Total number of indexes

which meet FTB criteria

– It’s actually the number of OPEN INDEX PARTS that

which meet FTB criteria

@IDUGDB2@IDUGDB2

FTB info in IFCID 2

• QISTFTBCAN - Total number of OPEN INDEX
PARTS which meet FTB criteria and the traverse
count is above the threshold (QISTTRAVMIN =
1000)
– Re-evaluated every two minutes

– Question: why aren’t they all in use as FTBs ?

• QISTFTBSIZE - total memory allocation for all
FTBs for this member (In Meg)
– This may be less than the potential

@IDUGDB2@IDUGDB2

FTB info in IFCID 2

• QISTFTBNUMP - Number of Index Parts for

which FTB existed in the previous run of in-

memory optimization (Prior two minute interval)

• QISTFTBNUMC - Number of Index Parts for

which FTB exists in the current run of in-memory

optimization (for the current two minute interval)

@IDUGDB2@IDUGDB2

-DIS STATS(IMU) LIMIT(*)

• Displays the index parts, in descending order by memory
usage, that are currently active.

• V12 example:

DSNT783I

DBID PSID DBNAME IX-SPACE LVL PART SIZE(KB)

----- ----- -------- -------- --- ---- --------

00418 00297 SAMPDB1 INDEX123 004 0001 00045152

00435 00016 SAMPDB2 INDEX345 004 0001 00024064

00267 00100 SAMPDB3 INDEX567 004 0001 00012683

@IDUGDB2@IDUGDB2

-DIS STATS(ITC) LIMIT(*)

• With LIMIT(*) all index parts that are eligible will
be displayed (QISTFTBCANT)

• The V12 display is descending by Traversal Count
– Recent maintenance may change this – V13 changes

have been retrofitted to V12

• The V13 display is descending by FTB Factor

@IDUGDB2@IDUGDB2

-DIS STATS(ITC)

• The display can be qualified by DBNAME, SPACE
& PART

• V12 display:
DSNT830I

DBID PSID DBNAME IX-SPACE LVL PART TRAV. COUNT

----- ----- -------- -------- --- ---- ----------

00406 00094 SAMPDB2 INDEX001 003 0001 0000452354

• V13 display:
DSNT830I

DBID PSID DBNAME IX-SPACE LVL PART TRAV. COUNT FTB FACTOR

----- ----- -------- -------- --- ---- ---------- ----------

00444 00019 SAMPDB5 INDEX002 003 0001 0000000000 0000000000

@IDUGDB2@IDUGDB2

IFCID 389

• This is the same data from the –DIS STATS(IMU)
LIMIT(*) command.

• We send STATS(*) to SMF and this IFCID is
covered. The IFCID cuts every two minutes –
each time the FTBs are re-evaluated

• V13 now includes the FTB Factor for each index
part

@IDUGDB2@IDUGDB2

IFCID 477

• This IFCID tracks the create/free of FTBs

• Not externalized with STAT(*)

• Cuts on the two minute interval

@IDUGDB2@IDUGDB2

Our results

• We have a large number of index parts that

qualify based on traversal count (> 1000)

• Memory utilization is between 30 – 40% of our

specified amount

• Getpage decrease is noticeable – CPU decrease

has been more difficult to discern

• Overhead hasn’t increased

@IDUGDB2@IDUGDB2

It would be nice if . . .

• Index parts that have a high traversal count

combined with a low FTB factor could be more

easily tracked

@IDUGDB2@IDUGDB2

Batch Generation of V13 Migration Jobs

• Supplied by V13 APAR PH52482 / PTF UI91497

• COMMENTS:

This PTF adds new parts DSNTIDOM, DSNTIDON,
DSNTIDOA, and DSNTIJBC in the prefix.SDSNSAMP
target library, adds a new program DSNTIFMT in the
prefix.SDSNLOAD target library, and generates a new
Db2 installation CLIST, which can run in the

background and enables users to generate tailored Db2

migration or function level activation jobs.

@IDUGDB2@IDUGDB2

First Step

• Use DSNTXAZP to generate TIDXA members (Db2
Installation Data) at V12 for all subsystems

• Used as input to the install/migrate clist

• Not needed if you keep these up to date

@IDUGDB2@IDUGDB2

DSNTIJBC

• The job has three steps:

– Run DSNTIFMT to reformat the install clist (DSNTINST) to

run in batch (DSNTINSB)

– IEBGENER to print DSNTINSB to SYSOUT

– Invoke DSNTINSB with ISPF batch

@IDUGDB2@IDUGDB2

DSNTIDOM

• Parms used to generate migration jobs for a standalone Db2 or for the
first member of a data sharing group

BATCH_MODE=YES
USE_ZOSMF_WORKFLOW=NO

INSTALL_TYPE=MIGRATE
MIGRATE_INPUT_DATA_SET=< V12 TIDXA for this subsystem >

DATA_SHARING=YES
MIGRATE_FIRST_GROUP_MEMBER=YES

DB2_SMPE_LIBRARY_NAME_PREFIX=< Prefix of V13 SMPE datasets >
DB2_SMPE_LIBRARY_NAME_SUFFIX=

INSTALL_DATA_SET_PREFIX=< Prefix for generated datasets >
INSTALL_DATA_SET_SUFFIX=< SSID >

DEFAULT_PARAMETER_INPUT_MEMBER=DSNTIDXA < V13 Shipped version >
PARAMETER_OUTPUT_MEMBER=< Generated V13 TIDXA for this member >

TARGET_FUNCTION_LEVEL=
CONSOLE_NAME=

@IDUGDB2@IDUGDB2

DSNTIDON

• Parms used to generate migration jobs for additional member(s) of a
data sharing group

BATCH_MODE=YES
USE_ZOSMF_WORKFLOW=NO

INSTALL_TYPE=MIGRATE
MIGRATE_INPUT_DATA_SET=< V12 TIDXA for this subsystem >

DATA_SHARING=YES
MIGRATE_FIRST_GROUP_MEMBER=NO

DB2_SMPE_LIBRARY_NAME_PREFIX=< Prefix of V13 SMPE datasets >
DB2_SMPE_LIBRARY_NAME_SUFFIX=

INSTALL_DATA_SET_PREFIX=< Prefix for generated datasets >
* The DEFAULT_PARAMETER_INPUT_MEMBER was generated

* by the first job. It’s the V13 DSNTIDXA that was output from that job
DEFAULT_PARAMETER_INPUT_MEMBER=<V13 DSNTIDXA from first member>

PARAMETER_OUTPUT_MEMBER=< Generated V13 TIDXA for this member >
CONSOLE_NAME=

@IDUGDB2@IDUGDB2

DSNTIDOA

• Parms for activating a Db2 function level

BATCH_MODE=YES

USE_ZOSMF_WORKFLOW=NO

INSTALL_TYPE=ACTIVATE

DB2_SMPE_LIBRARY_NAME_PREFIX= =< Prefix of V13 SMPE datasets >

DB2_SMPE_LIBRARY_NAME_SUFFIX=

INSTALL_DATA_SET_PREFIX=<Careful here – read the doc>

DEFAULT_PARAMETER_INPUT_MEMBER==<Valid V13 DSNTIDXA >

PARAMETER_OUTPUT_MEMBER=<New TIDXA for this member>

TARGET_FUNCTION_LEVEL=V13R1M5xx

@IDUGDB2@IDUGDB2

Our Implementation

• Generate V12 TIDXA members for all

subsystems. We do not keep these up to date.

• Use a homegrown variable substitution utility to

generate TIDOM & TIDON members and batch

jobs to run DSNTINSB.

• The original migration jobs are tailored and then

cloned for use for subsequent data sharing group

migrations.

@IDUGDB2@IDUGDB2

Controlling DDF with Profiling

• We have a number of profiles that have been

used to try to control connection flooding

• At times these profiles have worked when –STOP

DDF MODE(FORCE) on all members has failed to

control the connection flood

@IDUGDB2@IDUGDB2

Controlling DDF with Profiling

• The Hammer: Use MONITOR ALL

CONNECTIONS with EXCEPTION_DIAGLEVEL2

for Location 0.0.0.0. The number of allowable

connections is set to a very small value.

• The problem connections bleed off and this gives

us time to shut down the offending servers.

@IDUGDB2@IDUGDB2

Controlling DDF with Profiling

• Smaller Hammer: Use MONITOR ALL
CONNECTIONS with EXCEPTION_DIAGLEVEL2
for a specific location. The number of allowable
connections is set to a very small value but it only
applies to one location. Limiting threads by
AUTHID also works.

• This also buys time to shut down the problem
server.

@IDUGDB2@IDUGDB2

Controlling DDF with Profiling

• These profiles are kept in the profile tables with

PROFILE_ENABLED set to ‘N’ so that they can

be activated when needed.

• We also have samples that can be quickly

changed when new locations cause issues.

@IDUGDB2@IDUGDB2

Controlling DDF with Profiling

• Our monitoring checks for connection flooding

every minute on every production subsystem. We

identify flooding very quickly.

@IDUGDB2@IDUGDB2

Controlling DDF with Profiling

• Question: Does this work ?

– It depends

• Question: would Db2 AI work better ?

– Again – it depends

@IDUGDB2@IDUGDB2

Questions ?

@IDUGDB2@IDUGDB2

Appendix

@IDUGDB2@IDUGDB2

Running DSNTIJBC

• We condensed all of the steps into one proc

//STEP02 EXEC TIJBC

//STEP01.SYSIN DD *

//BATISPF.SYSTSIN DD *

ISPSTART CMD(%DSNTINSB +

OVERPARM(<Parm.Library>(<Parm_mem>))

) BREDIMAX(1)

Parm_mem is a specific TIDOM, TIDON or TIDOA member

@IDUGDB2@IDUGDB2

Running DSNTIJBC with VUE

• The clist invocation has to change for VUE

//STEP02 EXEC TIJBC
//STEP01.SYSIN DD *

//BATISPF.SYSTSIN DD *
ISPSTART CMD(%DSNTINSB +

OVERPARM(<Parm.Library>(<Parm_mem>)) +
OTCLPARM(Parm.Library(DSNTIDVU)) +

) BREDIMAX(1)

Parm_mem is a specific TIDOM, TIDON or TIDOA member – same as before

DSNTIDVU must have these settings:

OTC_LICENSE_USAGE=YES
LICENSE_TERMS_ACCEPTED=YES

@IDUGDB2@IDUGDB2

Tracing for DSNTINSB

• You can pass these trace parms to the invocation

of DSNTINSB:

– CONTROL(L) - LIST

– CONTROL(C) – CONLIST

– CONTROL(S) - SYMLIST

ISPSTART CMD(%DSNTINSB CONTROL(S) +

OVERPARM(<Parm.Library>(<Parm_mem>)) +

OTCLPARM(Parm.Library(DSNTIDVU)) +

) BREDIMAX(1)

@IDUGDB2@IDUGDB2

Debugging for DSNTINSB

• You can also run the format program (DSNTIFMT)

and save a copy of DSNTINSB. This can come in

handy until you get the parms set properly. You

can use this to add additional tracing (WRITE

statements) if need be.

• The error messages aren’t always informative.

@IDUGDB2@IDUGDB2

Parms for DSNTIDOM,ON & OA

• Each of these members has a set of required

parms and a set of optional parms. You should

carefully review the descriptions for all of the

parms.

• The parms in this presentation were the required

parms that worked at our shop. We also use some

of the optional parms as well.

	Slide 1: Db2 Hot topics from Progressive Insurance
	Slide 2: Agenda
	Slide 3: Db2 AI at Progressive
	Slide 4: Db2 AI install - SMPE
	Slide 5: Db2 AI install and challenges – Post SMPE
	Slide 6: Db2 AI install and challenges – Post SMPE
	Slide 7: Db2 AI install and challenges – Post SMPE
	Slide 8: Db2 AI install and challenges – Post SMPE
	Slide 9: Db2 AI install and challenges – Post SMPE
	Slide 10: Db2 AI usage challenges
	Slide 11: Db2 AI usage challenges
	Slide 12: Db2 AI usage challenges
	Slide 13: Db2 AI usage challenges
	Slide 14: Db2 AI usage challenges
	Slide 15: Db2 AI Positives
	Slide 16: Questions?
	Slide 17: Agenda – Part 2
	Slide 18: Fast Traversal Blocks – Background
	Slide 19: Controlling FTBs
	Slide 20: Our Implementation
	Slide 21: Monitoring FTBs
	Slide 22: FTB info in IFCID 2 – mapped by DSNDQIST
	Slide 23: FTB info in IFCID 2
	Slide 24: FTB info in IFCID 2
	Slide 25: -DIS STATS(IMU) LIMIT(*)
	Slide 26: -DIS STATS(ITC) LIMIT(*)
	Slide 27: -DIS STATS(ITC)
	Slide 28: IFCID 389
	Slide 29: IFCID 477
	Slide 30: Our results
	Slide 31: It would be nice if . . .
	Slide 32: Batch Generation of V13 Migration Jobs
	Slide 33: First Step
	Slide 34: DSNTIJBC
	Slide 35: DSNTIDOM
	Slide 36: DSNTIDON
	Slide 37: DSNTIDOA
	Slide 38: Our Implementation
	Slide 39: Controlling DDF with Profiling
	Slide 40: Controlling DDF with Profiling
	Slide 41: Controlling DDF with Profiling
	Slide 42: Controlling DDF with Profiling
	Slide 43: Controlling DDF with Profiling
	Slide 44: Controlling DDF with Profiling
	Slide 45: Questions ?
	Slide 46: Appendix
	Slide 47: Running DSNTIJBC
	Slide 48: Running DSNTIJBC with VUE
	Slide 49: Tracing for DSNTINSB
	Slide 50: Debugging for DSNTINSB
	Slide 51: Parms for DSNTIDOM,ON & OA

