
Boston, MA

Db2 Warehouse Latest

Mike Springgay, IBM

Session Code: C12

1

Please note :

•IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
and at IBM’s sole discretion.

•Information regarding potential future products is intended to outline our general product direction and it should
not be relied on in making a purchasing decision.

•The information mentioned regarding potential future products is not a commitment, promise, or legal obligation
to deliver any material, code or functionality. Information about potential future products may not be
incorporated into any contract.

•The development, release, and timing of any future features or functionality described for our products remains at
our sole discretion.

•Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon many
factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that
an individual user will achieve results similar to those stated here.

•When you interact with IBM, this serves as your authorization to IDUG or its vendor to provide your contact
information to IBM in order for IBM to follow up on your interaction.

2

Notices and disclaimers

•© 2021 International Business Machines Corporation. No part of this
document may be reproduced or transmitted in any form without
written permission from IBM.

•U.S. Government Users Restricted Rights — use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM.

•Information in these presentations (including information relating to
products that have not yet been announced by IBM) has been reviewed for
accuracy as of the date of initial publication and could include unintentional
technical or typographical errors. IBM shall have no responsibility to update
this information. This document is distributed “as is” without any warranty,
either express or implied. In no event, shall IBM be liable for any damage
arising from the use of this information, including but not limited to, loss of
data, business interruption, loss of profit or loss of opportunity.
IBM products and services are warranted per the terms and conditions of the
agreements under which they are provided.

•IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously
installed. Regardless, our warranty terms apply.”

•Any statements regarding IBM's future direction, intent or product plans
are subject to change or withdrawal without notice.

•Performance data contained herein was generally obtained in a controlled,
isolated environments. Customer examples are presented as illustrations of
how those customers have used IBM products and the results they may have
achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

•References in this document to IBM products, programs, or services does
not imply that IBM intends to make such products, programs or services
available in all countries in which IBM operates or does business.

•Workshops, sessions and associated materials may have been prepared by
independent session speakers, and do not necessarily reflect the views of
IBM. All materials and discussions are provided for informational purposes
only, and are neither intended to, nor shall constitute legal or other guidance
or advice to any individual participant or their specific situation.

•It is the customer’s responsibility to insure its own compliance with legal
requirements and to obtain advice of competent legal counsel as to
the identification and interpretation of any relevant laws and regulatory
requirements that may affect the customer’s business and any actions the
customer may need to take to comply with such laws. IBM does not provide
legal advice or represent or warrant that its services or products will ensure
that the customer follows any law.

3

Agenda

•Columnar Overview

•Improvements in 11.5+
•Columnar Storage

•Columnar Query Performance

•Other Improvements

•Container Improvements

4

Db2 Columnar processing

5

1114 Apple Lane

•With BLU, each page and extent contains values for a single column
TSN

0

1

2

3

4

5

6

7

8

9

…

TSN =

Tuple

Sequence

Number

Mike Hernandez

Chou Zhang

Carol Whitehead

Whitney Samuels

Ernesto Fry

Rick Washington

Pamela Funk

Sam Gerstner

Susan Nakagawa

John Piconne

Mike Hernandez

Chou Zhang

Carol Whitehead

Whitney Samuels

Ernesto Fry

Rick Washington

Pamela Funk

Sam Gerstner

Susan Nakagawa

John Piconne

43

22

61

80

35

78

29

55

32

47

43

22

61

80

35

78

29

55

32

47

404 EscuelaSt.

300 Grand Ave

1114 Apple Lane

14 California Blvd.

8883 Longhorn Dr.

5661 Bloom St.

166 Elk Road #47

911 Elm St.

455 N. 1st St.

18 Main Street

404 EscuelaSt.

300 Grand Ave

14 California Blvd.

8883 Longhorn Dr.

5661 Bloom St.

166 Elk Road #47

911 Elm St.

455 N. 1st St.

18 Main Street

CA

CA

CA

CA

AZ

NC

OR

OH

CA

MA

CA

CA

CA

CA

AZ

NC

OR

OH

CA

MA

90033

90047

95014

91117

85701

27605

97075

43601

95113

01111

90033

90047

95014

91117

85701

27605

97075

43601

95113

01111

Los Angeles

Los Angeles

Cupertino

Pasadena

Tucson

Raleigh

Beaverton

Toledo

San Jose

Springfield

Los Angeles

Los Angeles

Cupertino

Pasadena

Tucson

Raleigh

Beaverton

Toledo

San Jose

Springfield

Page

Extent
(assume

extentsize=2)

TSNs (a logical Row ID) are used to stitch together column values that belong in the same row during query processing
• eg. SELECT zipcode FROM t WHERE name=“Mike Hernandez”

• an internal ‘page map index’ allows Db2 to quickly find the page containing the zipcode for TSN 4

Deeper Look at Internals : Column Storage

`

Synopsis Table

•Meta-data that describes which
ranges of values exist in which
parts of the user table

•Enables Db2 to skip portions of a
table during query processing

•Benefits from data clustering

S_DATE QTY ...

2005 - 03- 01 176 ...

2005 - 03- 02 85 ...

2005 - 03- 02 267

2005 - 03- 04 231

...

...

...

...

User table: SALES_COL

SYN130330165216275152_SALES_COL

TSNMIN TSNMAXS_DATEMIN S_DATEMAX ...

0 1023 2005 - 03- 01 2006 - 10- 17 ...

1024 2047 2006 - 08- 25 2007 - 09- 15 ...

...

0

1023

1024

2047

0

1023

Predicate WHERE S_DATE = 2007-01-01 would skip first range.
Predicate WHERE S_DATE = 2006-09-12 would scan both ranges.

Each base table column has a synopsis min/max column.

7

Actionable Compression

•Actionable compression => Order-preserving encoding allows predicates to
be evaluated on compressed data

•SIMD (Single Instruction Multiple Data) parallelism used for fast predicate
evaluation on multiple compressed values

•Avoiding decompression during predicate evaluation provides significant
query performance gains

Instructions Encoded Data

Results

Compressing entire values in column-organized tables instead of compressing

across multiple columns as is done in row compression enables the encoding

to be order-preserving. This in turn allows the powerful capability to do actions

on the compressed data such as predicate evaluation.

9

9

•Column-organized operators execute in different subsections than row-organized
operators

•Column-organized subsections are processed by different sets of Db2 subagents

•Data is transferred between subsections using a column-organized table queue
(CTQ)

BLU Runtime Processing

Row processing
(subsection 1)

Column
processing
(subsection 2)

•Subsections run concurrently

•There can be multiple column or row processing subsections

•All subsections can be processed by multiple subagents

•Evaluators & Strides

•Classes to encompass the data and code that supports
one distinct runtime operation (e.g., loading a column
value or performing an arithmetic operation)

•Operate on batches (strides) of tuples (rows) at a time.

•A “stride” is defined by a TSN list, that defines the
range of rows being processed in a particular batch for a
table, plus a bitmap of valid TSNs

HSJOIN

SCAN SCAN

SORT

RETURN

CTQ

Columnar Storage Improvements in 11.5+

•Compression

•Insert Performance

•Synopsis

10

11

Automatic Dictionary Creation (ADC)

•Initial data inserted before ADC is uncompressed
•When threshold number of values inserted, ADC builds Evolved Dictionary
•Need enough input values to build effective dictionaries

•New values inserted after dictionaries are built are compressed while old
values are left uncompressed
•3 types of ADC: Vectorized, Asynchronous and Synchronous

Insert Data Threshold triggers ADC Evolved
Dictionary

Default
Dictionary

Insert Data Uncompressed
data

Evolved
Dictionary

Insert Data
Compressed data added
to existing
uncompressed data

Moving to SQL based load model also meant achieving better compression for
INSERTs was required.
To that end a concept of Automatic Dictionary Creation or ADC was introduced.
Depending on how the data is ingested different variations on ADC are applied.
In all flavours though basic principal is that initial rows are sampled but let through
uncompressed into the table.
Once enough rows are seen to force the ADC threshold to kick in a dictionary is built
and sub-sequent values start
to compress in the newly created dictionary.
Asynchronous and Synchronous apply similar approaches to sample the rows
inserted.
Synchronous is applied when a table lock exists that would prevent an independent
session from seeing or accessing the tables. Eg. CTAS, NLI, TEMPORARY TABLE
The newest addition is vectorized ADC. This new approach leverages the work we
just discussed to fully vectorize the bulk insert.
By injecting the histogram building into the stream of vectors being processed the
build time for a dictionary is significantly reduce as is
contention between the INSERT and the ADC processing

Compression Enhancements

•Enhancements to SQL-based insert and update statements
•Significant optimizations to process large volume of data more efficiently and

faster

•Optimized and improved compression

•Enhancement to further improve compression
•Recompress the initial data inserted before the creation of the dictionary

•After dictionary is built, initial data is recompressed with new dictionary

•Completely automated so compression should improve with no user
intervention

Un-encoded Data Encoded Data

Encoded Data

• When Automatic Dictionary Creation is used, some portion of the data will be inserted before the
dictionary is created.

• These uncompressed first portions of the data will be automatically compressed
• Compression of the first portion of un -encoded does not build a new compression dictionary, it

simply applies the compression dictionary to the first portion of the data that was uncompressed
initially

12

High Cardinality String Data Types Not
Dictionary Encoded

•Frequency-based compression not effective for high cardinality string datasets so percentage of values encoded
< 10%

•String data dominates storage cost

Product Description VARCHAR

Blue dress with unicorns girls size 6X

Red dress with hearts girls size 6X

Red dress with bears girls size 6X

Blue uniform shirt boys size 5

Red uniform shirt boys size 5

States VARCHAR

001 = Colorado

001 = Colorado

010 = Kentucky

001 = Colorado

011 = Illinois

Free flowing text stored unencodedStates have high frequency so are
encoded with dictionary

13

Page-Based String Compression Type 1

•New page-based compression
algorithm instead of dictionary-
based compression algorithm

•Looks for repeating patterns within
string data being inserted

•Significantly improves compression
of string data types, especially for
columns with high cardinality that
have many unique values

•Handles long common prefixes well

Frequency-based compression (even with our existing prefix compression) unable to
provide coverage for some datasets.
- Geospatial data
- URLs
- Comments
- Etc.

String datatypes = CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, BINARY, and VARBINARY

Enormous space savings possible for many such datasets!

14

More compression Improvements for High
Cardinality String Data Types

•Compression can have additional improvements for numeric data
stored in string data types

Product Description VARCHAR

Blue dress with unicorns girls size 6X

Red dress with hearts girls size 6X

Red dress with bears girls size 6X

Blue uniform shirt boys size 5

Red uniform shirt boys size 5

Postal Codes VARCHAR

95119

95120

95236

95237

95238

Page-based string compression
Type 1 compresses well for long
repeating data patterns

Compression can be improved
even more for short repeating
data patterns

Page-Based String Compression Type 1 requires 4+ byte patterns to compress.

15

Page-based String Compression Type 2

•Page-Based String Compression Type 2 very effective for compressing
high cardinality hex, date, timestamp, numeric data stored in string
data types

•Must have <= 16 distinct characters per compressed data page

•Sample data
•HEX: 59721B038CB9AC5A5DD09055529A64CA4D000000
•Postal-codes: 95133-7670
•Telephone Numbers: 1-408-775-6978
•Date:12/21/2003 (or other date formats)
•Time:11:32:02 (or other time formats)
•CDR (Call Detail Record for telecommunications):00650068D34B41799911903603

•Db2 automatically determines which compression scheme to use

16

17

Page-based String Compression Type 2

0

100

200

300

400

M
e

ga
b

yt
e

s
p

e
r

se
co

n
d

Execution time of
compression

(lower is better)

Type 1 Type 2

0

5

10

15

20

25

30

M
e

ga
b

yt
e

s

Size of compressed
data (lower is better)

Type 1 Type 2

In-house performance measurements compare compression of 3 million randomly

generated 10 character phone numbers using page-based string compression types 1

and 2.

Insert and Update Performance Improved

•Significant improvements to columnar ingestion performance

•Phased Approach
•Bulk Operations

•Trickle Operations

•LOAD command Coming

18

Update and Delete Performance

•Improved concurrency for statements targeting same table
•However, if they conflict:

•SQL0913N Unsuccessful execution of a transaction caused by
deadlock, timeout or write conflict. Reason code “208".

•208
statement failed because the database manager detected that
the row being updated or deleted has been modified by
another application.

19

Enhancement has been delivered to increase concurrency of bulk update and delete
statements operating on the same columnar tables.
Historically a table level lock was taken in a number of update and delete scenarios
were the scan isolation would need to escalated
higher then the CS+CC that columnar supports.

If the concurrent updates and deletes are targeting different rows in the table then
significant
serialization is occurring. To avoid this serialization the lock is no longer taken
instead a “write-write” conflict is now detected and returned if
a row found in the scan phase is detected as modified in the update phase.

Should reduce number of unnecessary delays and in many cases lock-timeouts that
are not necessary.
However could result in some statements failing that previous serialization was
allowing to proceed.

19

Insert and Update Performance

Columnar query processing leverages “vectors” for improved throughput. In effect
applying operations to a set of values instead of on a row or value by value bases

Original columnar Insert and Update did not take advantage of this optimization all IU
operations treated the same regardless of source.

But many IU operations in fact are batch in nature eg. INSERT FROM SELECT and bulk
UPDATES.

To improve performance of these class of “bulk” IU operations new insert and update
vector processing was introduced.

Originally introduced at the runtime layer but storage packing remained
unchanged
Now storage layer processing has been updated as well with introduction of a
new bulk insert path.
Significantly more efficient encoding and page packing when processing on a
vector basis
Reduce page compression costs – determination and used without need to
write / re-read pages

20

table1 table2

agents agents

table1 table2

Current (Db2) Multi-Core Query Parallelism

• Db2 Columnar has exceptional multi-core

scalability for queries

• Very strong scalability on the largest SMPs

•With combined MPP and SMP parallelism

• Includes the SELECT component of an

INSERT from sub-select

Deep Multi-Core Parallelism for Writes

• INSERT, UPDATE, DELETE

• Including MPP (aka DPF) support

• Expected benefits include

•Currently update parallelism disabled when indexes

present

Very significant reduction in ETL/ELT batch jobs

INSERT INTO table2

SELECT * FROM table1
Parallel Insert and Update improvements

The Db2 Columnar Engine was already highly SMP parallelized for query processing
but not Insert and Update operations.

Delete operations are already supper efficient on columnar tables so parallelism does
not benefit them.

SMP parallelism was introduced for bulk insert and update to increase the
performance beyond what vectorized provided

Supported on permanent and temporary tables. With and without indexes for
INSERT but only without INDEXes for UPDATE.

21

Trickle Feed Insert Enhancements (1|3)

Goals:

•Speed up “trickle” inserts

•Reduce memory, storage, and
log space consumption

•Decrease size of very small
tables.

22

Trickle Feed Insert Enhancements (2|3)

•Used only when small number of rows
are being inserted (aka data trickling
in).

•Inserted rows are split to one or more
“insert groups” – still columnar format
just inserting more columns per page.

•Number of insert groups depends
on types of columns, average
length, etc. But generally, will be
much less than total number of
columns.
•Data going into these insert

groups are not compressed.

23

Trickle Feed Insert Enhancements (3|3)

•The insert group pages are almost
always temporary -- a window of the
most recent ‘trickle’ inserts.
Exception is small tables.

•Insert group pages/rows are
automatically moved (aka split) to the
single column per page format.

•The split is done synchronously.
Triggered as soon as it’s predicted
that full column group pages can
be created.

24

Trickle Feed Insert Performance Results

•Results in customer and industry benchmark insert scenarios
•Dramatic reduction in table size for small tables

•Helps customers who are sensitive to storage consumption

•Example: TPCDS STORE table reduced from 1.5GB to 130MB in a 1/3 Rack IIAS

•Dramatic reduction in log volume and dirty page writes
•A large bank workload showed 78% log reduction and 44% less page writes

•A healthcare provider workload showed 70% log reduction

•Page-based string compression for trickle inserts
•Improved from zero compression to 2.5x compression for unencoded string

data for TPCH CUSTOMER table

11.5.7 in general also saw Insert performance enhancement as well as exposed Insert
Trickle support to all customers.
7% improvement for in-house massive insertion IBM Data Analytics Accelerator
workload
4% improvement for large trickle workload (thousands of rows) for a healthcare
provider
16-23% improvement for Insert from Subselect

25

LOAD Improvements

•Leverages the improved bulk insert path for efficient packing of pages

•Leverages the enhanced page compression support for unencode
strings
•Obviously with space savings when used with string, there can be less IO

•Perf improvements of 0-15% -- depends on data types n tables, how
much it compresses, disk speed/load, etc.

26

Space Overhead for Synopsis on Small Tables

•Synopsis tables can consume significantly more storage than small base
tables due to unused pages in extents
•Default of 4 pages per extent * number of parallel insert threads * # of

MLNs
•For each column in base table, synopsis table generates 2 columns
•Using synopsis table adds unnecessary performance overhead
•Small tables can be scanned quickly without synopsis table filtering

MLN 1

200 Extents *

4 pages per extent *

10 threads = 8000 pages

Synopsis Table with 200 columns on Base Table with 100 columns
using default of 4 pages per extent and Parallel Degree 10 on MPP
system with 4 MLNs = 32000 allocated pages with only 8000 used pages

Data

Default tablespace extent size 4

with only 1 page out of 4 used

. . .
MLN 4

200 Extents *

4 pages per extent *

10 threads = 8000 pages

Space usage overhead may quickly become significant depending on number of
concurrent streams used to populate a table.

27

Deferred Synopsis Tuple Creation for Small Tables

•Defer creation of synopsis tuples until certain table size exceeded

•Avoids creating unnecessary synopsis tuples for small base tables

•Small tables don’t need synopsis table for query performance

MLN 1

200 Extents *

4 pages per extent *

10 threads = 8000 pages

Synopsis Table with 200 columns using default of 4 pages
per extent and Parallel Degree 10 on MPP system with 4
MLNs = 32000 allocated pages with only 8000 used pages

Data

Default tablespace extent size 4

with only 1 page out of 4 used

. . .
MLN 4

200 Extents *

4 pages per extent *

10 threads = 8000 pages

28

New Columnar Storage Features Enablement

•Enabled by default for Db2 Warehouse and IBM Integrated Analytics

•Disabled by default for traditional Db2 install
•If enabled, fallback to earlier levels such as 11.5 GA is blocked

•New features along with registry variables (and usage) for each one are
documented in Knowledge Center

•Recommendation:
•New 11.5 installation or upgrade start with latest mode pack and enable features

immediately

•Existing installation move to latest mod pack and enable all once comfortable with level

The following registry variable settings are used on-prem to enable the new 11.5.4
features discussed here. NOTE that Db2 must be restarted after these registry
variables are set for them to take effect.

To enable Page-Based String Compression Types 1 and 2:

db2set DB2_COL_STRING_COMPRESSION=“UNENCODED_STRING:ON”

To enable Deferred Synopsis Tuple Creation:

DB2_COL_SYNOPSIS_SETTINGS="DEFER_FIRST_SYNOPSIS_TUPLE:ON”

To enable Trickle Improvements

DB2_COL_INSERT_GROUPS = YES

29

Query Performance Improvements in 11.5+

•Sort

•Early Distinct and Early Aggregation

•Full Outer Join

•Memory improvements

•Real Time Statistics

30

Local Sort for Insert-Subselect with Order-By

Without Local Sort With Local Sort
Source Data Nodes

Coordinator Node

Target Data Nodes

Source Data Nodes

Target Data Nodes

•During an Insert -Subselect with Order -by, the sorting for the order -by
can be done locally without sending rows to the coordinator node.

• E.g. insert into t1 select * from t2 order by c1;

Continuing on the theme of improvements for bulk INSERT operations within the
common SQL engine another area address was ORDER BY in INSERT FROM SELECT
If partitioning matches there is no need to sort beyond the local partition
Apply local sort removes unnecessary data movement prior to INSERT
High Level
- Identify intra-partition data movement
- Avoid needless processing by coordinator
- Avoid FCM and TQ processing
Applicability
- CTAS or Insert From Select Scenarios with Order By
- Both Source and Target data must be on the same partition

Value Proposition
- Significantly improves table sorting and ETL operations
Diagram showing how local sort saves on data movement
Can also be applied when partition does not match by sorting locally on source or on
the target.
When data is being re-insert there is no need for a full sort just reasonable clustering
to benefit synopsis and query performance

31

•New ways to:
•remove duplicate rows earlier

•do aggregation (“group by”) processing earlier

•Why
•Performance & memory

•Experience over the years with customers running row-organized

•Recent experience with columnar migrations
•These strategies have been found to be useful for many of them

Early DISTINCT and Early Aggregation

32

1. MPP partial-final distinct

2. “Distinct permit” early distinct

3. Full early distinct (“FED”)

4. Full early aggregation (“FEA”)

•Already in row engine
(3 & 4 in a slightly different form – “PED” & “PEA”)

•2 & 3 differ only internally; sometimes hard for even experts to tell
the difference

The 4 strategies

33

•Partial-final strategy

•First remove the duplicates locally…
partition 1 partition 2

1 2

2 3

3 4

•then redistribute (a lot fewer rows)…
partition 1 partition 2

4 1

2 3

2 3

•then remove the duplicates.
partition 1 partition 2

4 1

2 3

•Access plan looks something like this

UNIQUE

|

DTQ

|

UNIQUE

|

TBSCAN

•Drawbacks
•if not enough duplicates removed, then spent

too much effort & used more memory for not
enough gain

•Optimizer will model both, choose the one
estimated to be cheaper

MPP partial-final distinct

May need to move rows across partitions to remove all duplicates. Expensive.
Shared nothing:

query executes in parallel on each partition
partitions don't know what values other partitions have

Instead remove duplicates locally then redistribute the remaining rows for final
removal.

34

•Approach
•Query compiler analysis marks spots where duplicates can optionally be

removed while still maintaining correctness
•Optional because the later mandatory uniqueness requirement remains in place

•Optimizer creates multiple plan candidates, some with the early duplicate
removal, some without

•Winner (as always) based on estimated cost

“Distinct Permit” Early Distinct

•

Vanilla With early distinct

UNIQUE UNIQUE

| |

UNION UNION

/ \ / \

UNIQUE UNIQUE

Motivation: “an ounce of prevention”
Divide and conquer: several smaller duplicate removal steps instead of one
huge one that overwhelms memory
Prevent explosion: remove duplicates prior to expanding joins

1,000 rows * 1,000 rows = 1,000,000 rows
100 rows * 100 rows: = 10,000 rows

Doing it early saves effort in all later steps
Drawbacks

If not enough dups removed, then spent too much effort & used more
memory for not enough gain (you've seen this before)

35

•In some cases the uniqueness can be maintained through later steps, avoiding the
final duplicate removal work altogether.

•Example: "select distinct C1, C2 from <complex query> "

•Read bottom-up:

| < - 3. in this case, optimizer determines that

| (c1,c2) is unique after the join so no

| final dup removal step is required

HSJOIN < - 2. optimizer maintains list of what's

/ \ unique based on analysis of predicates

and input streams

... ...

UNIQUE C1 UNIQUE C2 < - 1. early duplicate removal

“Distinct Permit” Early Distinct

36

•Example: select distinct from t1, t2, t3 where...
UNIQUE

|

HSJOIN

/ \

HSJOIN UNIQUE

/ \ |

UNIQUE TBSCAN TBSCAN

| T2 T1

TBSCAN

T3

•In this example, the optimizer decided early duplicate removal was worth it for
T3 and T1 but not T2

•UNIQUE operator details in explain (db2exfmt) output for all UNIQUEs:
UNIQUE : (Uniqueness required flag)

HASHED COMPLETE

Full Early Distinct (“FED”)

Same motivation: “an ounce of prevention”
Divide and conquer: several smaller duplicate removal steps instead of one
huge one that overwhelms memory
Prevent explosion: remove duplicates prior to expanding joins
Doing it early saves effort in all later steps

Same idea, but can be done in more & different places Including right over a base
table access, before joins
Similar to row engine Partial Early Distinct (“PED”) but removes all, not some,
duplicates
Drawbacks
If not enough dups removed, then spent too much effort & used more memory for
not enough gain (you've seen this before) Similar approach

Query compiler analysis marks even more spots where duplicates can
optionally be removed while still maintaining correctness

Optional because the later mandatory uniqueness requirement
remains in place

Optimizer creates multiple plan candidates, some with the early duplicate
removal, some without
Winner (as always) based on estimated cost

37

•There are several, different, early group-by strategies in the query compiler
•This particular one is identified as possible at the Query Rewrite phase, decided during the

optimization phase.
•Similar to row engine Partial Early Aggregation (“PEA”) but aggregates fully, not partially

•Similar approach
•Query compiler analysis marks spots where early aggregation can optionally be performed while

still maintaining correctness
•Optional because the later mandatory aggregation step remains in place
•Only COUNT(_BIG), SUM, MIN, MAX

•Additional analysis
•Under which operations is it correct to place the early aggregation
•Under which joins is it advantageous to place the early aggregation - above filtering joins, below expanding

joins

•Optimizer creates multiple plan candidates, some with early aggregation, some without
•Winner (as always) based on estimated cost

•Data stream between the early agg and the final agg carries the grouping columns and also
partially aggregated results

Full Early Aggregation (“FEA”) (1|2)

There are several, different, early group-by strategies in the query compiler
This particular one is identified as possible at the Query Rewrite phase,
decided during the optimization phase.
Similar to row engine Partial Early Aggregation (“PEA”) but aggregates fully,
not partially

Similar motivation
prevent explosion: aggregate prior to expanding joins
doing it early saves effort in all later steps

Similar drawbacks
if the grouping does not reduce the #rows enough, then spent too much effort
& used more memory for not enough gain (you've seen this before)

38

•Example

•select count(t1.c1), t1.c2 from t1,t2 where t1.c3=t2.c3 group by t1.c2;
GRPBY

|

HSJOIN

/ ---- +----- \

GRPBY TBSCAN

| |

TBSCAN T2

|

T1

Full Early Aggregation (“FEA”) (2|2)

39

•Native Full Outer Join support in both Rowstore and Columar

•Supported only in Hash Join
•Must have at least 1 equality join predicate

•Remaining predicates applied as “Residual” predicate after equality predicate
matches

•When only inequality join predicates, Full Outer Join still rewritten

•No rewrite of supported Full Outer Joins

•More efficient handling of large, complex, Full Outer Join queries

•Reduced compile time

Full Outer Join

40

select sr_return_amt, ss_sold_date_sk
from store_sales
full outer join store_returns
on ss_ticket_number = sr_ticket_number and
ss_item_sk = sr_item_sk
full outer join customer
on ss_customer_sk = c_customer_sk and
ss_sold_date_sk <= c_first_shipto_date_sk

order by sr_return_amt, ss_sold_date_sk

Full Outer Join Example Query

Simple looking
query with 2
Full Outer Joins

41

The Query Plan

UNION

LEFT HSJN

ANTI HSJN

FULL HSJN
TEMP

Old Plan:
- Large & Complex

- 2 UNIONS
- 3 HSJNs
- 1 TEMP

New Plan:
- Compact & Simple
- 2 HSJNs

Rows

RETURN

(1)

Cost

I/O

|

2.86279e+09

MDTQ

(2)

4.80064e+06

1.33369e+06

|

5.96415e+07

TBSCAN

(3)

1.57541e+06

1.33369e+06

|

5.96415e+07

SORT

(4)

1.54245e+06

1.33369e+06

|

5.96415e+07

UNION

(5)

1.31935e+06

1.33369e+06

/ ----------------- +----------------- \

5.96415e+07 1.72154e - 09

TBSCAN HSJOINx

(6) (15)

619584 699771

665094 668596

| / ---- +----- \

5.96415e+07 994484 252116

TEMP DTQ TBSCAN

(7) (16) (18)

533951 681783 1923.08

665094 665094 3502

| | |

5.96415e+07 5.96415e+07 252116

UNION TBSCAN TABLE: PERFPOL1

(8) (17) CUSTOMER

493804 621257 Q13

665094 665094

/ ----------------- +----------------- \ |

5.96415e+07 7.27588e - 11 5.96415e+07

HSJOIN<^ HSJOINx^ TEMP

(9) (12) (7)

249110 244694 533951

332547 332547 665094

/ ------- +------- \ / ------- +------- \

5.96529e+06 5.96415e+07 5.96415e+07 5.96529e+06

TBSCAN TBSCAN TBSCAN TBSCAN

(10) (11) (13) (14)

19080 213405 213405 19080

27810 304737 304737 27810

| | | |

5.9653e+06 5.96415e+07 5.96415e+07 5.9653e+06

DP- TABLE: PERFPOL1 DP - TABLE: PERFPOL1 DP - TABLE: PERFPOL1 DP - TABLE: PERFPOL1

STORE_RETURNS STORE_SALES STORE_SALES STORE_RETURNS

Q2 Q1 Q6 Q5

Rows

RETURN

(1)

Cost

I/O

|

2.86279e+09

MDTQ

(4)

3.83446e+06

336049

|

5.96415e+07

TBSCAN

(5)

609223

336049

|

5.96415e+07

SORT

(6)

576269

336049

|

5.96415e+07

>HSJOIN<

(7)

366961

336049

/ ---- +----- \

5.96415e+07 252116

DTQ TBSCAN

(8) (14)

341084 1923.08

332547 3502

| |

5.96415e+07 252116

>HSJOIN< TABLE: PERFPOL1

(9) CUSTOMER

249678 Q4

332547

|

/ ------- +------- \

5.96529e+06 5.96415e+07

TBSCAN TBSCAN

(12) (13)

19080 213405

27810 304737

| |

5.9653e+06 5.96415e+07

DP- TABLE: PERFPOL1 DP - TABLE: PERFPOL1

STORE_RETURNS STORE_SALES

Q2 Q1

42

Columnar improved memory efficiency

•Improved memory stability and performance of the columnar engine
•Specifically for workloads involving queries with VARCHAR columns

•Dramatically reduce Out of Memory (OOM) / -955C errors

•Improve individual query and overall workload performance

•Reduce need to modify schema to better size varchar columns

•Phased approach:
•Vector and Work Units

•Group by and Join

•Aggregation and OLAP

•M to N Joins Coming in future

Multi-stream throughput improvement: 2x

Query execution time speed-up:

╖ Overall workloads: 4.3x

╖ Individual queries: Up to 44x

Reduction in spilling to the buffer pool:

╖ Overall workloads: 5x

╖ Individual queries: Up to 596x

Reduction in spilling to disk

Lower HWM of memory used by all SORTHEAPs at one time:

╖ Overall workloads: 4%

╖ Individual queries: Up to 17%

Higher stability:

╖ Error reduction: No -901 -955, -968 (disk full due to spilling)

43

Real Time Statistics

•Table with NO statistics or out of data statistics then:
•Previously column organized only “fabricated” stats

•Now Column organized also supports synchronous stats

•Support very similar to RTS for row tables were 5s of “synchronous”
stats collection is attempted before falling back to fabricated stats

44

Other Improvements in 11.5+

•Configuration Options

•Temporal Tables

•Spatial Analytics

•In-database Analytics

•Columnar Logical backup and Restore

45

Configuration Improvements

•New database configuration parameters allow for optimal Warehouse behavior

•DDL_CONSTRAINT_DEF
•Determines if constraints should be enforced by default i.e primary key enforcement
•Db2 Warehouse default: NO
•Chosen for optimal ingestion performance (ie. no indexes)

•DDL_COMPRESSION_DEF
•Determines if STATIC compression applied to ROW tables by default
•Db2 Warehouse default : YES

•DEC_ARITHMETIC
•Control how precision and scale determined for results of decimal arithmetic
•Db2 Warehouse defaults to DEC.6

•LARGE_AGGREGATION
•Upcasts result type for SUM, AVG, COUNT, etc. to reduce overflows when doing large aggregations
•Db2 Warehouse default: YES

46

Columnar Temporal Tables

•Support for system-maintained column-organized temporal tables

•Functionally equivalent to row-organized temporal tables
•System-period temporal tables / System Time

•Every row has a pair of timestamps (SYSTEM_TIME period) set by Db2, indicating the system validity
period for the content of the row.

•For each UPDATE/DELETE operation, the before image of each affected row is inserted into a separate
history table.

•Users can query at current and/or any prior point/period in system time, with transparent routing to the
history table if needed.

•Application-period temporal tables / Business Time
•Every row has a pair of dates/timestamps (BUSINESS_TIME period) set by user application, indicating the

business validity period for the content of the row.
•Db2 provides automatic business time key enforcement.
•Query over any current, any prior, future point/period in business time.
•Time-based update/delete statements with automatic "row splitting".

•Bitemporal tables: combination of the above two

47

Spatial Analytics

•Dedicated data type to hold shapes
•LOB-based datatype SYSIBM.ST_GEOMETRY allows storing large geometries
•Dedicated subtypes for points, linestrings, polygons, etc

•Pre-loaded spatial catalog data with SQL procedures for customization
•E.g. add custom coordinate systems

•SQL functions based on the SQL/MM and OGC standards:
•Construct and maintain/modify shapes
•Determine relations between shapes
•Get properties
•SELECT ST_DISTANCE(ST_CENTROID(GEOM1), GEOM2) FROM TAB1, TAB2

•Same feature/interfaces for column and row-organized tables
•Enabled via SYSINSTALLOBJECTS procedure

Spatial Analytics refined implantation over spatial extenders . Supports both ROW
and COLUMN organized tables the same way

ST_GEOMETRY now a system provided type name but leverage LOB based storage .
Includes dedicated sub-types for points , line strings, polygons ,etc.

Spatial catalog is now pre-populated including SQL procedures for customizations like
coordinates.

Default spatial reference is 4326 and WGS84 system reference. Pervious extenders
defaulted to 0 and no system reference.

Implements built-in functions conforming to both the SQL/MM and OGC standards.
Example select which leverages ST_DISTANCE and ST_CENTROID functions … notice
no need to prefix a schema as they are built-in.

48

Analytic Procedures

• K-means clustering

• Naive Bayes

• Association rules

• Sequential patterns

• Linea regression

• Decision trees

• Regression trees

• KNN

Stored procedures provide predictive analytics algorithms
Clustering, Classification, Decision trees and other algorithms provided natively within the database
Fast In-DB analytics when compared to executing these algorithms in applications
Integrated with database to provide model management and security

Ported versions of a large subset of the INZA functions
• New schema IDAX
• In most cases with the same parameters as their INZA counterparts
• Further details on compatibility can be found under

https://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.apdv.porting.doc/doc/compat
_analytic_functions.html

• Examples:
• CALL IDAX.KMEANS('model=adult_mdl, intable=adult, outtable=adult_out, id=id, k=3, maxiter=5‘);
• CALL IDAX.PREDICT_KMEANS('model=adult_mdl, intable=adult, outtable=adult_pred, id=id‘);
• CALL IDAX.CORR('intable=CensusIncome, incolumn=age;wage_per_hour‘);

Ported INZA stored procedures which call the corresponding Spark SPSS functions:
• Generalized Linear Regression

• IDAX.GLM, IDAX.PREDICT_GLM
• Two Step Clustering

• IDAX.TWOSTEP, IDAX.PREDICT_TWOSTEP

49

LOGICAL: Table data is unloaded to files stored on disk

•Cross-platform

• (linuxamd / ppcle for now)

•Topology independent DPF/EE

•Table level granularity on restore

•Subject to all SQL rules: WLM, config

•Write access to tables during backup

•Easy table/schema copy from
production to test

50

DB

DB

files

What is Logical Schema BnR?

db_backup and db_restore Python scripts
Provided with IBM Integrated Analytic System or Db2 Warehouse
(not available for traditional Db2 for now)
Run outside of engine - using SQL
Backup image is a file with unloaded table contents, includes db2look output
Unload uses External Tables
Restore DROP(s) and CREATE(s) table(s) and non-table objects in schema.
Then uses INSERTs to repopulate the tables
Also known as Schema BnR, Logical BnR

50

•IN lock on tables

•Supports INCREMENTAL (delta and cumulative)

•Point in time snapshot backup

•Only Columnar tables

•Only in schema enabled for ROW MODIFICATION TRACKING

•Uses SQL
•Uses External Tables both backup and restore
•db2look captures DDL
•Restore DROP(s) and CREATE(s) table(s) and non-table objects in schema.
•Then uses INSERTs to repopulate the tables

Columnar Online Incremental Schema BnR:

51

•New syntax for CREATE SCHEMA command

•Only certain tables (Columnar, no MQT, no temporary)
•Other tables are created as usual

•3 BIGINT implicitly hidden columns added
•SYSROWID – unique ID of row, generated
•Persists on UPDATE OR-masked with REPL_SITE_ID (db cfg)

•CREATEXID – ID of transaction that added the row

•DELETEXID – ID of transaction that deleted the row
•Can be updated in place, not compressed

•REORG RECLAIM will not reclaim rows that are needed by BACKUP

ROW MODIFICATION TRACKING

52

•ALTER SCHEMA ENABLE ROW MODIFICATION TRACKING

•Tables have to be re-created

•CREATE TABLE … AS () WITH DATA (into schema enabled for RMT)

•ADMIN_COPY_SCHEMA (need to ALTER ENABLE RMT prior to copy)

•db_restore –enable-row-modification-tracking from schema backup
image taken on schema not enabled for row modification tracking

•Logical schema backup will fail if tables exist that are not enabled for
row modification tracking!

Existing SCHEMA ?

53

Future: Extending Columnar Logical BnR

•Logical Schema backups available in all Db2 deployments (target 11.5.8)

•Invoked via stored procedures:
•SYSPROC.LOGICAL_BACKUP(‘–schema CUSTOMERS –type full –path …’)

•SYSPROC.LOGICAL_RESTORE(….)

•Backup image is a folder with collection of sub-folders and files
•Path is local to server, can be NFS ,
•File/folder owned by user that invoked stored procedure

•Target can also be S3 and TSM

•Permissions to read schema and tables (to backup) and DROP/CREATE (to restore)

•Permissions to write files (to backup) and read files (to restore)

•Restrictions:
•Only linux (AMD, PPCLE)

54

Container Improvements

55

V4 V5 V6V1 V2 V3 V7 V8 V9 V10 V11 V12

Containers Next Generation (1|3)

•One-to-One mapping between
each database MLN storage
path and k8s volumes

•Leads to better support for
horizontal scaling

•Heterogenous configurations
•Each MLN can be backed by more than one

volume as well
•Mitigate volume size limitations in

cloud deployments (typically 16TB
to 64TB cap depending on the
vendor)

•Better IO parallelism
•Lower storage cost*

Custom controller
(watch for Db2uEngine CR)

Pod 0

MLN 0
Meta

MLN 1

Pod 1

MLN 2 MLN 3

Pod2

56

• Cloud-native Db2
Backup/Restore,
and Snapshot
capabilities

• Db2
backup/restore,
and volume
snapshots driven
via a k8s controller

Containers Next Generation (2|3)

57

Containers Next Generation (3|3)

•Support large-scale data warehouse and transactional databases

•Better support for horizontal scaling

•Cloud-native backup, restore and snapshot capabilities

•More Day 2 operations will be transformed to provide a cloud-native
user experience – I.E., simply interact with a k8 object rather than
directly with Db2

58

External Table: Open Data Format

•Available in Cloud Pack For Data

•Open Format data formats
•Available only in Object Store
•S3 compatible

(IBM COS, AWS S3)

•MS Azure

•Point to a directory / folder not a
specific file like other external tables

59

Thank You

Speaker: Mike Springgay

Company: IBM

Email Address: springga@ca.ibm.com

Session Code: C12

Please fill out your session evaluation before leaving!

Mike Springgay is the Db2 Warehouse Architect focused on the common engine
components.
Prior to that he was responsible for extending Db2's SQL compatibility features,
routine infrastructure and client server connectivity.

60

